Giải phương trính :
\(\sqrt{4x^2+5x+1}-2\sqrt{x^2-x+1}=9x-3\)
Giải phương trình: \(\sqrt{4x^2+5x+1}-9x=2\sqrt{x^2-x+1}-3\)
GIẢI PHƯƠNG TRÌNH
a) \(\dfrac{1}{3}\sqrt{x-2}-\dfrac{2}{3}\sqrt{9x-18}+6\sqrt{\dfrac{x-2}{81}}=-4\)
b) \(\sqrt{9x^2+12x+4}=4x\)
c) \(\sqrt{9x-18}-\sqrt{4x-8}+3\sqrt{x-2}=40\)
d) \(\sqrt{5x-6}-3=0\)
a: \(\Leftrightarrow\dfrac{1}{3}\sqrt{x-2}-\dfrac{2}{3}\cdot3\sqrt{x-2}+6\cdot\dfrac{\sqrt{x-2}}{9}=-4\)
\(\Leftrightarrow\sqrt{x-2}=4\)
=>x-2=16
hay x=18
b: \(\Leftrightarrow\left|3x+2\right|=4x\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+2=4x\left(x>=-\dfrac{2}{3}\right)\\3x+2=-4x\left(x< -\dfrac{2}{3}\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\left(nhận\right)\\x=-\dfrac{2}{7}\left(nhận\right)\end{matrix}\right.\)
c: \(\Leftrightarrow3\sqrt{x-2}-2\sqrt{x-2}+3\sqrt{x-2}=40\)
\(\Leftrightarrow4\sqrt{x-2}=40\)
=>x-2=100
hay x=102
d: =>5x-6=9
hay x=3
\(a,\dfrac{1}{3}\sqrt{x-2}-\dfrac{2}{3}\sqrt{9x-18}+6\sqrt{\dfrac{x-2}{81}}=-4\left(dk:x\ge2\right)\)
\(\Leftrightarrow\dfrac{1}{3}\sqrt{x-2}-2\sqrt{x-2}+\dfrac{2}{3}\sqrt{x-2}=-4\)
\(\Leftrightarrow\sqrt{x-2}=4\)
\(\Leftrightarrow x-2=16\)
\(\Leftrightarrow x=18\left(tmdk\right)\)
b,\(\sqrt{9x^2-12x+4=3x\left(dk:x\ge0\right)}\)
\(\Leftrightarrow\sqrt{\left(3x-2\right)^2}=3x\)
\(\Leftrightarrow\left|3x-2\right|=3x\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x-2=3x\\3x-2=-3x\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x\in\varnothing\\x=\dfrac{1}{3}\left(tmdk\right)\end{matrix}\right.\)
Các câu còn lại làm tương tự nhé
\(\dfrac{1}{3}\sqrt{x-2}-\dfrac{2}{3}\sqrt{9x-18}+6\sqrt{\dfrac{x-2}{81}}=-4\) (đk: x≥2)
\(\dfrac{1}{3}\sqrt{x-2}-\dfrac{2}{3}\sqrt{9\left(x-2\right)}+6\sqrt{\dfrac{1}{81}\left(x-2\right)}=-4\)
\(\dfrac{1}{3}\sqrt{x-2}-2\sqrt{x-2}+\dfrac{2}{3}\sqrt{x-2}=-4\)
\(\dfrac{1}{3}\sqrt{x-2}-\dfrac{4}{3}\sqrt{x-2}=-4\)
\(-\sqrt{x-2}=-4\)
\(\sqrt{x-2}=4\)
\(\left|x-2\right|=16\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=16\\x-2=-16\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=18\left(TM\right)\\x=-14\left(L\right)\end{matrix}\right.\)
Giải phương trình sau:
a) \(\sqrt{4x+20}-3\sqrt{5+x}+\dfrac{4}{3}\sqrt{9x+45}=6\)
b) \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)
c) \(2x-x^2+\sqrt{6x^2-12x+7}=0\)
d) \(\left(x+1\right)\left(x+4\right)-3\sqrt{x^2+5x+2}=6\)
a: Ta có: \(\sqrt{4x+20}-3\sqrt{x+5}+\dfrac{4}{3}\sqrt{9x+45}=6\)
\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)
\(\Leftrightarrow3\sqrt{x+5}=6\)
\(\Leftrightarrow x+5=4\)
hay x=-1
b: Ta có: \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)
\(\Leftrightarrow\dfrac{1}{2}\sqrt{x-1}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)
\(\Leftrightarrow\sqrt{x-1}=17\)
\(\Leftrightarrow x-1=289\)
hay x=290
Giải phương trình \(\sqrt{4x^2+5x+1}-2\sqrt{x^2-x+1}=9x-3\)
\(\sqrt{4x^2+5x+1}-2\sqrt{x^2-x+1}=9x-3\)
\(\Leftrightarrow\sqrt{4x^2+5x+1}-\dfrac{2\sqrt{7}}{3}-\left(2\sqrt{x^2-x+1}-\dfrac{2\sqrt{7}}{3}\right)=9x-3\)
\(\Leftrightarrow\dfrac{4x^2+5x+1-\dfrac{28}{9}}{\sqrt{4x^2+5x+1}+\dfrac{2\sqrt{7}}{3}}-\dfrac{4\left(x^2-x+1\right)-\dfrac{28}{9}}{2\sqrt{x^2-x+1}+\dfrac{2\sqrt{7}}{3}}=9x-3\)
\(\Leftrightarrow\dfrac{\dfrac{36x^2+45x-19}{9}}{\sqrt{4x^2+5x+1}+\dfrac{2\sqrt{7}}{3}}-\dfrac{\dfrac{36x^2-36x+8}{9}}{2\sqrt{x^2-x+1}+\dfrac{2\sqrt{7}}{3}}=3\left(3x-1\right)\)
\(\Leftrightarrow\dfrac{\dfrac{\left(3x-1\right)\left(12x+19\right)}{9}}{\sqrt{4x^2+5x+1}+\dfrac{2\sqrt{7}}{3}}-\dfrac{\dfrac{4\left(3x-2\right)\left(3x-1\right)}{9}}{2\sqrt{x^2-x+1}+\dfrac{2\sqrt{7}}{3}}-3\left(3x-1\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(\dfrac{12x+19}{9\left(\sqrt{4x^2+5x+1}+\dfrac{2\sqrt{7}}{3}\right)}-\dfrac{4\left(3x-2\right)}{9\left(2\sqrt{x^2-x+1}+\dfrac{2\sqrt{7}}{3}\right)}-3\right)=0\)
Dễ thấy: \(\dfrac{12x+19}{9\left(\sqrt{4x^2+5x+1}+\dfrac{2\sqrt{7}}{3}\right)}-\dfrac{4\left(3x-2\right)}{9\left(2\sqrt{x^2-x+1}+\dfrac{2\sqrt{7}}{3}\right)}-3< 0\)
\(\Rightarrow3x-1=0\Rightarrow3x=1\Rightarrow x=\dfrac{1}{3}\)
Giải phương trình:
\(\sqrt{4x^2+5x+1}+3=2\sqrt{x^2-x+1}+9x\)
Bạn lưu ý:
\(a=\sqrt{4x^2+5x+1}\ge0\)
\(b=\sqrt{4x^2-4x+4}=\sqrt{\left(2x-1\right)^2+3}\ge\sqrt{3}>1\)
Do đó \(a+b>1\) hay \(a+b-1>0\)
Giải phương trình
\(\sqrt{4x^2+5x+1}-2\sqrt{x^2-x+1}=3-9x\)
ĐKXĐ: \(\left[{}\begin{matrix}x\le-1\\x\ge-\frac{1}{4}\end{matrix}\right.\)
\(\sqrt{4x^2+5x+1}-\sqrt{4x^2-4x+4}+9x-3=0\)
Đặt \(\left\{{}\begin{matrix}a=\sqrt{4x^2+5x+1}\ge0\\b=\sqrt{4x^2-4x+4}>0\end{matrix}\right.\) \(\Rightarrow a^2-b^2=9x-3\)
Phương trình trở thành:
\(a-b+a^2-b^2=0\)
\(\Leftrightarrow a-b+\left(a-b\right)\left(a+b\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(a+b+1\right)=0\)
\(\Leftrightarrow a-b=0\) (do \(a;b>0\Rightarrow a+b+1>0\))
\(\Leftrightarrow a=b\Rightarrow\sqrt{4x^2+5x+1}=\sqrt{4x^2-4x+4}\)
\(\Leftrightarrow4x^2+5x+1=4x^2-4x+4\)
\(\Leftrightarrow9x=3\Rightarrow x=\frac{1}{3}\)
YRibi Nkok Ngokkudo shinichiNguyễn Thị Diễm QuỳnhDƯƠNG PHAN KHÁNH DƯƠNGNguyenkhongbietem!Y ThuKhôi BùiHISINOMA KINIMADOnguyễn ngọc dinhLê Anh DuyPhùng Tuệ MinhTrần Trung NguyênRồng Đom ĐómNguyễn Thành TrươngNguyễn Quỳnh ChiNguyễn Huy TúAkai HarumaAce LegonaNguyễn Thanh HằngVõ Đông Anh TuấnMysterious Personsoyeon_Tiểubàng giảiPhương AnTrần Việt Linh
Giải phương trình \(\sqrt{4x^2+5x+1}-2\sqrt{x^2-1+1}=3-9x\)
ĐKXĐ: \(\left[{}\begin{matrix}x\le-1\\x\ge-\frac{1}{4}\end{matrix}\right.\)
\(\sqrt{4x^2+5x+1}-\sqrt{4x^2-4x+4}+9x-3=0\)
Đặt \(\left\{{}\begin{matrix}a=\sqrt{4x^2+5x+1}\ge0\\b=\sqrt{4x^2-4x+4}>0\end{matrix}\right.\) \(\Rightarrow a^2-b^2=9x-3\)
Phương trình trở thành:
\(a-b+a^2-b^2=0\)
\(\Leftrightarrow a-b+\left(a-b\right)\left(a+b\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(1+a+b\right)=0\)
\(\Leftrightarrow a=b\) (do \(\left\{{}\begin{matrix}a\ge0\\b>0\end{matrix}\right.\Rightarrow1+a+b>0\))
\(\Rightarrow\sqrt{4x^2+5x+1}=\sqrt{4x^2-4x+4}\)
\(\Leftrightarrow9x=3\)
\(\Rightarrow x=\frac{1}{3}\)
Giải phương trình: \(\sqrt{4x^2+5x+1}-2\sqrt{x^2-x+1}=3-9x\)
Giải phương trình \(\sqrt{x^3-4x^2+5x-2}-\sqrt{\left(x-2\right)^5}=\left(x-1\right)\sqrt{9x^3-18x^2}\)