3.
Cái chữ n ở câu này khó chịu quá, chỉnh nó thành \(p=\dfrac{\left[a,b\right]}{a+1}+\dfrac{\left[a,b\right]}{b+1}\) cho dễ nhìn
Đặt \(\left\{{}\begin{matrix}a=dn\\b=dm\end{matrix}\right.\) với \(\left(m,n\right)=1\)
\(\Rightarrow p=\dfrac{dmn}{dm+1}+\dfrac{dmn}{dn+1}\)
\(\Rightarrow p\left(dm+1\right)\left(dn+1\right)=dmn\left(dm+dn+2\right)\)
Do \(\left(dm+1;d\right)=\left(dn+1;d\right)=1\)
\(\Rightarrow p⋮d\Rightarrow\left[{}\begin{matrix}d=1\\d=p\end{matrix}\right.\)
- TH1: Nếu \(d=p\Rightarrow\left(dm+1\right)\left(dn+1\right)=mn\left(dm+dn+2\right)\) (1)
Do \(\left(dm+1;m\right)=\left(dn+1;n\right)=1\)
\(\Rightarrow\left\{{}\begin{matrix}dm+1⋮n\\dn+1⋮m\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}dm+1=an\\dn+1=bm\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m=\dfrac{a+d}{ab-d^2}\\n=\dfrac{b+d}{ab-d^2}\end{matrix}\right.\)
Thế vào (1):
\(\Rightarrow ab=\dfrac{2ab+ad+bd}{ab-d^2}\Rightarrow ab\left(ab-d^2\right)=2ab+ad+bd\)
\(\Rightarrow\left\{{}\begin{matrix}ad⋮b\\bd⋮a\end{matrix}\right.\)
Hiển nhiên, từ \(\left\{{}\begin{matrix}dm+1=an\\dn+1=bm\end{matrix}\right.\) ta có a và b đều ko thể chia hết cho d (vì nếu chia hết suy ra 1 chia hết cho d, vô lý do \(d=p\) là SNT)
\(\Rightarrow\left\{{}\begin{matrix}a⋮b\\b⋮a\end{matrix}\right.\) \(\Rightarrow a=b\Rightarrow m=n\Rightarrow m=n=1\) do \(\left(m,n\right)=1\)
\(\Rightarrow p=\dfrac{d}{d+1}+\dfrac{d}{d+1}=\dfrac{2d}{d+1}=\dfrac{2p}{p+1}\Rightarrow p=1\) (loại)
TH2: Nếu \(d=1\)
\(\Rightarrow p\left(m+1\right)\left(n+1\right)=mn\left(m+n+2\right)\) (2)
- Nếu \(m=n\Rightarrow m=n=1\Rightarrow p=1\) ko thỏa mãn
- Nếu \(m\ne n\), ko mất tính tổng quát giả sử \(m>n\)
Từ (2) ta có \(mn\left(m+n+2\right)\) chia hết cho p
+ Nếu \(m+n+2⋮p\Rightarrow\left(m+1\right)\left(n+1\right)⋮m\)
\(\Rightarrow n+1⋮m\Rightarrow n+1\ge m\)
Mà \(n< m\Rightarrow n+1\le m\Rightarrow n+1=m\)
Tương tự \(\left(m+1\right)\left(n+1\right)⋮n\Rightarrow m+1⋮n\Rightarrow n+2⋮n\Rightarrow2⋮n\)
\(\Rightarrow\left(n;m\right)=\left(1;2\right);\left(2;3\right)\) thay vào (2) ko có p thỏa mãn
+ Nếu \(n⋮p\)
mặt khác \(mn\left(m+n+2\right)=\dfrac{m}{2}\left(2mn+2n^2+4n\right)>\dfrac{m}{2}\left(mm+m+n+1\right)\)
\(\Rightarrow p\left(m+1\right)\left(n+1\right)>\dfrac{m}{2}\left(m+1\right)\left(n+1\right)\Rightarrow p>\dfrac{m}{2}>\dfrac{n}{2}\)
Do đó \(n=p\Rightarrow\left(n+1\right)\left(m+1\right)=m\left(m+n+2\right)\)
\(\Rightarrow n+1⋮m\Rightarrow n+1=m\Rightarrow m=0\) (ko thỏa mãn)
+ Nếu \(m⋮p\Rightarrow m=p\Rightarrow\left(p+1\right)\left(n+1\right)=n\left(p+n+2\right)\)
\(\Rightarrow p=n^2+n-1\)
\(\Rightarrow4p+5=4\left(n^2+n-1\right)+5=\left(2n+1\right)^2\)