\(P=\sqrt{x^2+3^2}+\sqrt{y^2+5^2}\ge\sqrt{\left(x+y\right)^2+\left(3+5\right)^2}=10\)
\(P_{\min}=10\) khi x=9/4;y=15/4
\(P=\sqrt{x^2+3^2}+\sqrt{y^2+5^2}\ge\sqrt{\left(x+y\right)^2+\left(3+5\right)^2}=10\)
\(P_{\min}=10\) khi x=9/4;y=15/4
Cho x,y là các số thực dương thỏa mãn x+y+xy=3 tìm các giá trị lớn nhất của biểu thức
\(P=\sqrt{9-x^2}+\sqrt{9-y^2}+\dfrac{x+y}{4}\)
cho các số thực dương x,y thỏa mãn điều kiện x+y=2016.Tìm giá trị nhỏ nhất của biểu thức:
P=\(\sqrt{5x^2+xy+3y^2}+\sqrt{3x^2+xy+5y^2}+\sqrt{x^2+xy+2y^2}+\sqrt{2x^2+xy+y^2}\)
Cho x,y,z là các số thực dương thỏa mãn đẳng thức xy+yz+zx=5. Tìm giá trị nhỏ nhất của biểu thức
\(P=\frac{3x+3y+3z}{\sqrt{6\left(x^2+5\right)}+\sqrt{6\left(y^2+5\right)}+\sqrt{6\left(z^2+5\right)}}\)
Cho các số thực dương x y , thỏa mãn xy = 1, tìm giá trị nhỏ nhất của biểu thức (x^2 + y^2 + 6)/(x + y)
Bài 1:
Cho số thực x. Với \(x\ge1\).Tìm giá trị nhỏ nhất của biểu thức
\(A=\sqrt{x-2\sqrt{x-1}}+5.\sqrt{x+3-4.\sqrt{x-1}}+\sqrt{x+8-6.\sqrt{x-1}}\)
Bài 2:
Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức:
\(y=\frac{x^2}{x^2-5x+7}\)
Bài 3:
Cho hai số dương x,y thay đổi nhưng luôn thỏa mãn điều kiện \(\frac{2}{x}+\frac{3}{y}=6\)
Tìm giá trị nhỏ nhất của x+y
Cho x, y là các số thực dương thỏa mãn x+y<=1. Tìm giá trị nhỏ nhất của biểu thức P=\(\left(\frac{1}{X} +\frac{1}{Y}\right).\sqrt{1+X^2Y^2}\)
Cho các số không âm thỏa mãn x+y+z=3 . Tìm giá trị lớn nhất , nhỏ nhất của biểu thức \(M=\sqrt{x^2-6x+26}+\sqrt{y^2-6y+25}+\sqrt{z^2-6z+25}\)
\(\text{Cho các số dương x,y thỏa mãn điều kiện}\left(x+\sqrt{1+x^2}\right)\left(y+\sqrt{1+y^2}\right)=2018.\text{Tìm giá trị nhỏ nhất của biểu thức: P=x+y}\)
Cho các số thực dương x,y thỏa mãn: \(\sqrt{x^2+y^2}+\sqrt{y^2+z^2}+\sqrt{z^2+x^2}=2017.\)
Timg giá trị nhỏ nhất của biểu thức: \(T=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)
cho các số thực dương x;y;z thỏa mãn :\(\sqrt{x^2+y^2}\) +\(\sqrt{y^2+z^2}\)+\(\sqrt{z^2+x^2}\)=2015
tìm giá trị nhỏ nhất của biểu thức : T=\(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\)