Nhân ngày nhà giáo Việt Nam 20/11, thay mặt ban quản trị Hoc24, em gửi lời cảm ơn và chúc mừng các thầy cô giáo trên cộng đồng Hoc24. Kính chúc các thầy cô nhiều sức khỏe, nhiều niềm vui, hạnh phúc và thành công trong sự nghiệp.
Nhân ngày nhà giáo Việt Nam 20/11, thay mặt ban quản trị Hoc24, em gửi lời cảm ơn và chúc mừng các thầy cô giáo trên cộng đồng Hoc24. Kính chúc các thầy cô nhiều sức khỏe, nhiều niềm vui, hạnh phúc và thành công trong sự nghiệp.
Em cũng xin gửi lời chúc mừng 20/11 đến các thầy cô giáo nhân ngày Nhà giáo Việt Nam. Chúc các thầy cô luôn mạnh khỏe, thành đạt, hạnh phúc và công tác tốt. Trẻ mãi không già , ăn mãi không béo .
Em chúc các thầy cô khỏe mạnh để tiếp tục cho sự việc trồng người ạ !
Nhân ngày 20/11 em chúc thầy cô luôn tràn đầy năng lượng và sức khỏe. Cảm ơn thầy cô đã dành cả trái tim và tâm huyết để truyền dạy kiến thức cho chúng em. Chúng em sẽ luôn nhớ mãi những bài học quý giá từ thầy cô."
Vì trái đất lại có hai mặt trăng
cho tam giác abc có i là trung điểm ab.đường thẳng qua i và song song với bc cắt ac bởi k và song song với ab cắt bc ở h. chứng minh kh=ib,ak=kc,ih//ac,h là trung điểm của bc
giúp em vs ạ em đang gấp
Sửa đề: Qua K, kẻ đường thẳng song song với AB cắt BC tại H
Xét tứ giác BIKH có
BI//KH
BH//KI
Do đó: BIKH là hình bình hành
=>KH=IB
mà IB=IA
nên KH=IA
Xét ΔKHC và ΔAIK có
\(\widehat{KHC}=\widehat{AIK}\left(=\widehat{ABC}\right)\)
KH=IA
\(\widehat{CKH}=\widehat{KAI}\)(hai góc đồng vị, KH//AB)
Do đó: ΔKHC=ΔAIK
=>KA=KC
=>K là trung điểm của AC
ΔKHC=ΔAIK
=>HC=IK
mà IK=HB(BIKH là hình bình hành)
nên HB=HC
=>H là trung điểm của BC
Xét ΔBAC có
I,H lần lượt là trung điểm của BA,BC
=>IH là đường trung bình của ΔBAC
=>IH//AC
Các bạ hãy đề xuất các cách sử dụng công nghệ trong hoạt động ý nghĩa nhé!
giúp
tìm số x,y nguyên biết xy + x - y = 4
\(xy+x-y=4\)
\(\Rightarrow x\left(y-1\right)-\left(y-1\right)=5\)
\(\Rightarrow\left(y-1\right)\left(x-1\right)=5\)
\(\Rightarrow\left(x-1\right);\left(y-1\right)\in U\left(5\right)=\left\{-1;1;-5;5\right\}\)
\(\Rightarrow\left(x;y\right)\in\left\{\left(0;-4\right);\left(2;6\right);\left(-4;0\right);\left(6;2\right)\right\}\) \(\left(x;y\in Z\right)\)
xy + x - y = 4
(xy + x) - y = 4
x(y + 1) - y - 1 = 4 - 1
x(y + 1) - (y + 1) = 3
(y + 1)(x - 1) = 3
*) Trường hợp 1: x - 1 = -3 và y + 1 = -1
+) x - 1 = -3
x = -3 + 1
x = -2 (nhận)
+) y + 1 = -1
y = -1 - 1
y = -2 (nhận)
*) Trường hợp 2: x - 1 = -1 và y + 1 = -3
+) x - 1 = -1
x = -1 + 1
x = 0 (nhận)
+) y + 1 = -3
y = -3 - 1
y = -4 (nhận)
*) Trường hợp 3: x - 1 = 1 và y + 1 = 3
+) x - 1 = 1
x = 1 + 1
x = 2 (nhận)
+) y + 1 = 3
y = 3 - 1
y = 2 (nhận)
*) Trường hợp 4: x - 1 = 3 và y + 1 = 1
+) x - 1 = 3
x = 3 + 1
x = 4 (nhận)
+) y + 1 = 1
y = 1 - 1
y = 0 (nhận)
Vậy ta được các cặp giá trị (x; y) thỏa mãn yêu cầu:
(-2; -2); (0; -4); (2; 2); (4; 0)
1 trường học tập trung 4 khối 6,7,8 và 9 để diễu hành biết khối 6 có 300 học sinh, khối 7 có 276 học sinh, khối 8 có 252 học sinh, khối 9 có 396 học sinh. Học sinh mỗi khối xếp thành các hàng dọc sao cho số hàng dọc của mỗi khối là như nhau. Có thể xếp nhiều nhất thành mấy hàng dọc để mỗi khối đều không có ai lẻ hàng. Khi đó, mỗi hàng dọc của mỗi khối có bao nhiêu học sinh?
Giúp mình nhanh nha các bạn! Mình thực sự rất cần gấp!!!
Gọi x là số hàng nhiều nhất mà học sinh các khối có thể xếp được
Điều kiện: `x in N`*
Khi đó: `x in ƯC(300;276;252;396)`
Ta có:
`300 = 2^2 . 3 . 5^2`
`276 = 2^2 . 3 . 23`
`252 = 2^2 . 3^2 . 7`
`396 = 2^2 . 3^2 . 11`
`=> UCLN(300;276;252;396) = 2^2 . 3 = 12`
`=> x in Ư(12) `
`=> x = 12` (Thỏa mãn)
Vậy số hàng nhiều nhất mà học sinh các khối có thể xếp được là 12 hàng
13.5-2.3 mũ 3
`13.5-2.3^3`
`=13.5-2.9`
`= 65 - 18`
`= 47`
13 . 5 - 2 . \(3^2\) = 65 - 2 . 9 = 65 - 18 = 47
Ba khối 6, 7, 8 theo thứ tự có 300 học sinh, 276 học sinh, 252 học sinh xếp thành hàng dọc để diễu hành sao cho số hàng dọc của mỗi khối như nhau. Biết rằng số hàng dọc lớn hơn 5 và nhỏ hơn 10. Hỏi có thể xếp thành mấy hàng dọc để mỗi khối đều không ai lẻ hàng? Khi đó ở mỗi khối có bao nhiêu học sinh trong một hàng ?
\(300=2^2\cdot3\cdot5^2\)
\(276=2^2\cdot3\cdot23\)
\(252=2^2\cdot3^2\cdot7\)
=>\(ƯCLN\left(300;276;252\right)=2^2\cdot3=12\)
Để chia 300 học sinh khối 6; 276 học sinh khối 7; 252 học sinh khối 8 thành các hàng dọc sao cho số hàng dọc của mỗi khối như nhau thì số hàng dọc phải là ước chung của 300;276;252
=>Số hàng dọc là ước của 12
mà số hàng dọc lớn hơn 5 và nhỏ hơn 10
nên số hàng dọc là 6 hàng
Số học sinh khối 6 ở trong một hàng là:
300:6=50(bạn)
Số học sinh khối 7 ở trong một hàng là:
276:6=46(bạn)
Số học sinh khối 8 ở trong một hàng là:
252:6=42(bạn)
-1 + 2 + (-3) +4 + (-5) +......+ 98 + (-99)
-1+2+(-3)+4+...+98+(-99)
\(=\left(-1+2\right)+\left(-3+4\right)+...+\left(-97+98\right)+\left(-99\right)\)
\(=1+1+...+1+\left(-99\right)\)
=-99+49
=-50
-1+2+(-3)+4(-5)+...+98+(-99) = (-1+2)+(-3+4)+...+(97+98)+(-99)
= 1+1+...+1+(-99)
= -99+45
= -50
tìm các số nguyên x và y sao cho: 3xy + x - 6y = 21
3xy + x - 6y = 21
(3xy - 6y) + x = 21
3y(x - 2) + x - 2 = 21 - 2
(x - 2)(3y + 1) = 19
*) x - 2 = -19; 3y + 1 = -1
+) 3y + 1 = -1
3y = -1 - 1
3y = -2
y = -2/3 (loại)
*) x - 2 = -1; 3y + 1 = -19
+) 3y + 1 = -19
3y = -19 - 1
3y = -20
y = -20/3 (loại)
*) x - 2 = 1; 3y + 1 = 19
+) x - 2 = 1
x = 1 + 2
x = 3 (nhận)
+) 3y + 1 = 19
3y = 19 - 1
3y = 18
y = 18 : 3
y = 6 (nhận)
*) x - 2 = 19; 3y + 1 = 1
+) x - 2 = 19
x = 19 + 2
x = 21 (nhận)
+) 3y + 1 = 1
3y = 1 - 1
3y = 0
y = 0 (nhận)
Vậy ta được các cặp giá trị (x; y) thỏa mãn yêu cầu đề bài:
(3; 6); (21; 0)
so sánh : <;>;=
3 mũ1994 + 3 mũ 1993 - 3 mũ 1992 ....... 9 mũ 99 96
3^1994 + 3^1993 - 3^1992=3^1992(3^2 + 3 -1)= 3^1992.11
9^9996=(3^2)^9996=3^19992.
=> 3^1994+3^1993-3^1992 < 9^9996
chúc bạn học tốt nhé