b) \(\sqrt[]{\left(x-1\right)^2}=5\)
\(\Leftrightarrow\left|x-1\right|=5\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=5\\x-1=-5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-4\end{matrix}\right.\)
d) \(\sqrt[]{x^2+8x+16}-8=0\)
\(\Leftrightarrow\sqrt[]{\left(x+4\right)^2}=8\)
\(\Leftrightarrow\left|x+4\right|=8\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4=8\\x+4=-8\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-12\end{matrix}\right.\)
e) \(x-\sqrt[]{x-1}=3\)
\(\Leftrightarrow\sqrt[]{x-1}=x-3\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-3\ge0\\x-1=\left(x-3\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge3\\x-1=x^2-6x+9\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge3\\x^2-7x+10=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge3\\x=2\cup x=5\end{matrix}\right.\)
\(\Leftrightarrow x=5\)