Bạn lưu ý:
\(a=\sqrt{4x^2+5x+1}\ge0\)
\(b=\sqrt{4x^2-4x+4}=\sqrt{\left(2x-1\right)^2+3}\ge\sqrt{3}>1\)
Do đó \(a+b>1\) hay \(a+b-1>0\)
Bạn lưu ý:
\(a=\sqrt{4x^2+5x+1}\ge0\)
\(b=\sqrt{4x^2-4x+4}=\sqrt{\left(2x-1\right)^2+3}\ge\sqrt{3}>1\)
Do đó \(a+b>1\) hay \(a+b-1>0\)
Giải phương trình \(\sqrt{4x^2+5x+1}-2\sqrt{x^2-1+1}=3-9x\)
Giải phương trình \(\sqrt{x^3-4x^2+5x-2}-\sqrt{\left(x-2\right)^5}=\left(x-1\right)\sqrt{9x^3-18x^2}\)
giải pt \(\sqrt{4x^2+5x+1}+3=2\sqrt{x^2-x+1}+9x\)
Giải phương trình 1, \(x^2+9x+7=\left(2x+1\right)\sqrt{2x^2+4x+5}\)
2, GPT \(\left(2x+7\right)\sqrt{2x+7}=x^2+9x+7\)
3. GHPT \(\left\{{}\begin{matrix}x^2-2y-1=2\sqrt{5y+8}+\sqrt{7x-1}\\\left(x-y\right)\left(x^2+xy+y^2+3\right)=3\left(x^2+y^2\right)+2\end{matrix}\right.\)
Giải PT : \(\sqrt{4x^2+5x-1}-2\sqrt{x^2-x-1}=9x+3\)
1. Giai phương trình: \(2x+3+\sqrt{4x^2+9x+2}=2\sqrt{x+2}+\sqrt{4x+1}\)
2. Giai hệ phương trình: \(\left\{{}\begin{matrix}2x^2-y^2+xy-5x+y+2=\sqrt{y-2x+1}-\sqrt{3-3x}\\x^2-y-1=\sqrt{4x+y+5}-\sqrt{x+2y-2}\end{matrix}\right.\)
1. giải phương trình bậc hai một ẩn
a, 3x2+7x+2=0
b,\(\dfrac{x^2}{3}+\dfrac{4x}{5}-\dfrac{1}{12}\)=0
c\(\left(5-\sqrt{2}\right).x^2-10x+5x+\sqrt{2}=0\)
d,(x-1)(x+2)=70
1. Giải pt: \(x+\sqrt{x-1}=3+\sqrt{2\left(x^2-5x+5\right)}\)
2. Giải hpt: \(\left\{{}\begin{matrix}x-2\sqrt{y+1}=3\\x^3-4x^2\sqrt{y+1}-9x-8y=-52-4xy\end{matrix}\right.\)
Giải phương trình: \(\sqrt{5x^2+4x}-\sqrt{x^2-3x-18}=5\sqrt{x}\)