Bài 4:Tìm m để pt sau có nghiệm kép:
a)\(x^2-\left(3-2m\right)x+m^2=0\)
b)\(x^2+\left(2m+1\right)x+m^2=0\)
Hỏi đáp
Bài 4:Tìm m để pt sau có nghiệm kép:
a)\(x^2-\left(3-2m\right)x+m^2=0\)
b)\(x^2+\left(2m+1\right)x+m^2=0\)
a, x2 - (3 - 2m)x + m2 = 0
\(\Delta\) = [-(3 - 2m)]2 - 4.1.m2 = 9 - 12m + 4m2 - 4m2 = 9 - 12m
Để pt trên có nghiệm kép thì \(\Delta\) = 0 \(\Leftrightarrow\) 9 - 12m = 0 \(\Leftrightarrow\) m = \(\dfrac{3}{4}\)
Vậy ...
b, x2 + (2m + 1)x + m2 = 0
\(\Delta\) = (2m + 1)2 - 4.1.m2 = 4m2 + 4m + 1 - 4m2 = 4m + 1
Để pt trên có nghiệm kép thì \(\Delta\) = 0 \(\Leftrightarrow\) 4m + 1 = 0 \(\Leftrightarrow\) m = \(\dfrac{-1}{4}\)
Vậy ...
Chúc bn học tốt!
Bài 6:Cho đường tròn tâm O đường kính AB cố định.điểm I nằm giữa A và O sao cho AI=\(\dfrac{2}{3}\)AO.Kẻ dây cung MN vuông góc với AB tại I.Gọi C là điểm tùy ý thuộc cung lớn MN sao cho C ko trùng với M,N và B,Nối AC cắt MN tại E.Chứng minh
a)Tứ giác IECB nội tiếp đường tròn
b)AE.AC=AM\(^2\)
a. ta có:
\(\widehat{EIB}=90\) độ
\(\widehat{ECB}=90\) độ (=\(\widehat{ACB}=90\) độ)
⇒\(\widehat{EIB}+\widehat{ECB}=180\)độ. Vì \(\widehat{EIB}\) và \(\widehat{ECB}\) là hai góc đối diện
⇒ Tứ giác IECB là tứ giác nội tiếp
b. Xét ΔACM ∞ ΔAME
\(\widehat{MAC}\) chung
MN \(\perp\) AB(gt) ⇒sđ\(\stackrel\frown{AM}\) = sđ\(\stackrel\frown{AN}\) ⇒ \(\widehat{ACM}=\widehat{AMN}\)
⇒ ΔACM∞ΔAME
⇒\(\dfrac{AM}{AB}=\dfrac{AC}{AM}\) hay \(AM^2=AE.AC\)
[Ôn thi vào 10]
Bài 1:
Cho biểu thức \(P=\dfrac{\sqrt{x}}{\sqrt{x}+1}+\dfrac{2\sqrt{x}-1}{1-\sqrt{x}}+\dfrac{2x}{x-1}\) (với \(x\ge0\) và \(x\ne1\))
a. Rút gọn biểu thức \(P\).
b. Tính giá trị của biểu thức \(P\) khi \(x=4+2\sqrt{3}\).
Bài 2:
a. Viết phương trình đường thẳng \(d\) đi qua điểm \(A\left(1;-2\right)\) và song song với đường thẳng \(y=2x-1\).
b. Giải hệ phương trình
\(\left\{{}\begin{matrix}\dfrac{2}{x}+\dfrac{3}{y}=12\\\dfrac{5}{x}+\dfrac{2}{y}=19\end{matrix}\right.\)
Bài 3:
Quãng đường AB đài 120 km. Một ô tô khởi hành từ A đến B, cùng lúc đó một xe máy khởi hành từ B về A với vận tốc nhỏ hơn vận tốc của ô tô là 24 km/h. Ô tô đến B được 50 phút thì xe máy về tới A. Tính vận tốc của mỗi xe.
Bài 4:
Cho phương trình \(x^2-2\left(m+2\right)x+3m+1=0\)
a. Chứng minh rằng phương trình luôn có nghiệm với mọi \(m\).
b. Gọi \(x_1,x_2\) là hai nghiệm của phương trình đã cho. Chứng minh rằng biểu thức \(M=x_1\left(3-x_2\right)+x_2\left(3-x_1\right)\) không phụ thuộc vào \(m\).
Bài 5:
Cho tam giác ABC nhọn (AB<AC), nội tiếp đường tròn (O). Tia phân giác của góc BAC cắt dây BC tại D và cắt đường tròn (O) tại điểm thứ hai là E. Các tiếp tuyến với đường tròn (O) tại C và E cắt nhau tại N, tia CN và tia AE cắt nhau tại P. Gọi Q là giao điểm của hai đường thẳng AB và CE.
a. Chứng minh tứ giác AQPC nội tiếp một đường tròn.
b. Chứng minh EN//BC.
Bài 5:Cho tam giác ABC cân tại A nội tiếp đường tròn tâm O,các đường cao AG,BE,CF cắt nhau tại H
a)Chứng minh tứ giác AEHF nội tiếp đường tròn,
b)Từ B kẻ tiếp tuyến Bx của đường tròn.Hãy tính góc ABC khi góc bằng 65 độ
có \(\widehat{AEH}=90\)
\(\widehat{AFH}\)=90
\(\widehat{AEH}+\widehat{AFH}=90+90=180\) tổng 2 góc đối nhau
⇒ tứ giác AEHF là tứ giác nội tiếp
[CUỘC THI TRÍ TUỆ VICE]
Trang fanpage của cuộc thi đã có 2k like và follow đó, hãy ủng hộ chúng mình để chúng mình tiếp cận nhiều người nhất có thể nhé!
Cuộc thi Trí tuệ VICE | Facebook
*Trả lời đúng và hay sẽ được nhận 1GP/câu trả lời nha ^^
-----------------------------------------------------------
[Toán.C412-416 _ 16.3.2021]
\(\left(a-\dfrac{1}{2}\right)\left(a-1\right)\le0\)\(\Leftrightarrow\)\(3a\ge2a^2+1\)
\(P=\Sigma\dfrac{a}{b+c+1}\ge\dfrac{1}{3}\Sigma\left(\dfrac{2a^2+1}{b+c+1}\right)\ge\dfrac{1}{3}\Sigma\left(\dfrac{2a^2+1}{a+b+c+\dfrac{1}{2}}\right)\ge\dfrac{\dfrac{2}{3}\left(a+b+c\right)^2+3}{3\left(a+b+c+\dfrac{1}{2}\right)}\)
Cần CM: \(\dfrac{4t^2+18}{18t+9}\ge\dfrac{3}{4}\) ( với \(\dfrac{3}{2}\le t=a+b+c\le3\) )
\(\Leftrightarrow\)\(\left(t-\dfrac{15}{8}\right)\left(t-\dfrac{3}{2}\right)\ge0\) ( đúng với \(\dfrac{3}{2}\le t\le3\) )
...
\(P=\Sigma\dfrac{a}{b+c+1}\le\Sigma\dfrac{a}{b+c+a}=1\)
Lần sau post gõ latex cho dễ nhìn
Giải HPT \(\left\{{}\begin{matrix}x^3=3x+8y\\y^3=3y+8x\end{matrix}\right.\)
Trừ 2 vế của phương trình, ta được:
\(x^3-y^3=-5x+5y\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2\right)+5\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2+5\right)=0\)
\(\Rightarrow x=y\)
Thay vào hệ ban đầu, ta được: \(x^3=3x+8x\)
\(\Leftrightarrow x^3-11x=0\)
\(\Leftrightarrow x\left(x^2-11\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=y=0\\x=y=\pm\sqrt{11}\end{matrix}\right.\)
Vậy...
Cho các số dương x,y,z thỏa mãn điều kiện x+y+z = 2020
Tìm giá trị nhỏ nhất của biều thức \(T=\sqrt{2x^2+xy+2y^2}+\sqrt{2y^2+yz+2z^2}+\sqrt{2z^2+xz+2x^2}\)
Ta có:
\(2\left(2x^2+xy+2y^2\right)=3\left(x^2+y^2\right)+\left(x+y\right)^2\ge\dfrac{3}{2}\left(x+y\right)^2+1\left(x+y\right)^2=\dfrac{5}{2}\left(x+y\right)^2\)
\(\Rightarrow\sqrt{2x^2+xy+2y^2}\ge\dfrac{\sqrt{5}}{2}\left(x+y\right)\)
Gợi ý. Dùng cái trên.
[Ôn thi vào 10]
Bài 1:
a. Tính \(A=\sqrt{8}+\sqrt{18}-\sqrt{32}\)
b. Rút gọn biểu thức \(B=\sqrt{9-4\sqrt{5}}-\sqrt{5}\)
Bài 2:
a. Giải hệ phương trình: \(\left\{{}\begin{matrix}2x-3y=4\\x+3y=2\end{matrix}\right.\)
b. Giải phương trình: \(\dfrac{10}{x^2-4}+\dfrac{1}{2-x}=1\)
Bài 3:
Một đội thợ mỏ phải khai thác 260 tấn than trong một thời hạn nhất định. Trên thực tế, mỗi ngày đội đều khai thác vượt định mức 3 tấn, do đó họ đã khai thác được 261 tấn than và xong trước thời hạn một ngày.
Hỏi theo kế hoạch mỗi ngày đội thợ phải khai thác bao nhiêu tấn than?
Bài 1:
a) \(A=\sqrt{8}+\sqrt{18}-\sqrt{32}\)
\(=2\sqrt{2}+3\sqrt{2}-4\sqrt{2}\)
\(=\sqrt{2}\)
b) \(B=\sqrt{9-4\sqrt{5}}-\sqrt{5}\)
\(=\sqrt{4-4\sqrt{5}+5}-\sqrt{5}\)
\(=\sqrt{\left(2-\sqrt{5}\right)^2}-\sqrt{5}\)
\(=\left|2-\sqrt{5}\right|-\sqrt{5}\)
\(=\sqrt{5}-2-\sqrt{5}\)
\(=-2\)
Bài 2:
a) \(\left\{{}\begin{matrix}2x-3y=4\\x+3y=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3x=6\\x+3y=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\2+3y=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\)
Vậy phương trình có nghiệm là: \(\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\)
b) ĐKXĐ: \(x\ne\pm2\)
Với \(x\ne\pm2\), ta có:
\(\dfrac{10}{x^2-4}+\dfrac{1}{2-x}=1\)
\(\Leftrightarrow\dfrac{10}{\left(x-2\right)\left(x+2\right)}-\dfrac{1}{x-2}=1\)
\(\Leftrightarrow\dfrac{10-x-2}{x^2-4}=1\)
\(\Leftrightarrow\dfrac{8-x}{x^2-4}=1\)
\(\Rightarrow x^2-4=8-x\)
\(\Leftrightarrow x^2+x-12=0\)
\(\Leftrightarrow x^2-3x+4x-12=0\)
\(\Leftrightarrow x\left(x-3\right)+4\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+4=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-4\end{matrix}\right.\) (TM)
Vậy phương trình có tập nghiệm là: S ={3; -4}
Gọi số tấn than mỗi ngày đội thợ phải khai thác theo kế hoạch là: x(tấn). 0 < x <260
Số tấn than đã khai thác thực tế trong mỗi ngày là: x + 3 (tấn)
Số ngày mà đội thợ khai thác 260 tấn trong kế hoạch là: \(\dfrac{260}{x}\) (ngày)
Số ngày mà đội thợ khai thác 261 tấn thực tế là: \(\dfrac{261}{x+3}\) (ngày)
Vì trên thực tế, mỗi ngày đội đều khai thác vượt định mức 3 tấn, do đó họ đã khai thác được 261 tấn than và xong trước thời hạn một ngày nên ta có phương trình:
\(\dfrac{261}{x+3}+1=\dfrac{260}{x}\)
\(\Leftrightarrow\dfrac{261+x+3}{x+3}=\dfrac{260}{x}\)
\(\Leftrightarrow\dfrac{264+x}{x+3}=\dfrac{260}{x}\)
\(\Rightarrow260\left(x+3\right)=x\left(264+x\right)\)
\(\Leftrightarrow260x+780=264x+x^2\)
\(\Leftrightarrow x^2+4x-780=0\)
\(\Leftrightarrow x^2-26x+30x-780=0\)
\(\Leftrightarrow x\left(x-26\right)+30\left(x-26\right)=0\)
\(\Leftrightarrow\left(x-26\right)\left(x+30\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-26=0\\x+30=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=26\left(TM\right)\\x=-30\left(loại\right)\end{matrix}\right.\)
Vậy số tấn than mỗi ngày đội thợ phải khai thác theo kế hoạch là: 26 tấn
Bài 4:Giải hệ pt:\(\left\{{}\begin{matrix}\left(x+2\right)\left(y-3\right)=xy+1\\2\left(x+y\right)=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy-3x+2y-6=xy+1\\2x+2y=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2y-3x=7\\2x+2y=5\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{2}{5}\\y=\dfrac{29}{10}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\left(x+2\right)\left(y-3\right)=xy+1\\2\left(x+y\right)\end{matrix}\right.\)⇔\(\left\{{}\begin{matrix}\left(x+2\right)\left(y-3\right)=xy+1\\2x+2y=5\end{matrix}\right.\)
\(\left\{{}\begin{matrix}xy-3x+2y-6=xy+1\\y=\dfrac{5-2x}{2}\end{matrix}\right.\)⇔\(\left\{{}\begin{matrix}-3x+2y=7\\y=\dfrac{5-2x}{2}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}-3x+2.\dfrac{5-2x}{2}=7\\y=\dfrac{5-2x}{2}\end{matrix}\right.\)⇔\(\left\{{}\begin{matrix}x=-0,4\\y=2,9\end{matrix}\right.\)
Bài 2:Vẽ đồ thị hàm số sau trên mặt phẳng tọa độ ,nhận xét về đồ thị:
a)y=-2x\(^2\)
b)y=\(\dfrac{1}{2}x^2\)