Violympic toán 9

Quoc Tran Anh Le

 

Bạn đã like Trang để nhận thông báo mới nhất về cuộc thi chưa?

Cuộc thi Toán Tiếng Anh VEMC | Facebook

Có câu hỏi hay? Gửi ngay chờ chi:

[Tiền sự kiện 1] Thử sức trí tuệ - Google Biểu mẫu

-------------------------------------------------------------------

[Toán.C38 _ 26.1.2021]

undefined

[Toán.C39 _ 28.1.2021]

Cho x,y,z dương. Tìm giá trị nhỏ nhất của:

\(P=\dfrac{x+y}{x+y+z}+\dfrac{y+z}{y+z+4x}+\dfrac{z+x}{z+x+16y}\).

tthnew
2 giờ trước (14:45)

Câu 38.

Bất đẳng thức chặt hơn vẫn đúng

\(\dfrac{2ab}{\sqrt{\left(b+c\right)\left(c+a\right)}}+\dfrac{c^2}{a+b}\ge\dfrac{a+b+c}{2}+\dfrac{27}{16}\cdot\dfrac{\left(a-b\right)^2}{a+b+c}\)

Bất đẳng thức ban đầu của anh em có một solution nhưng rất xấu.

 

Bình luận (0)
Nguyễn Việt Lâm
1 giờ trước (15:17)

a.

ĐKXĐ: \(\left\{{}\begin{matrix}x\ge2\\y\ge3\end{matrix}\right.\)

\(\left\{{}\begin{matrix}3\sqrt{x-2}+3\sqrt{y-3}=9\\2\sqrt{x-2}-3\sqrt{y-3}=-4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3\sqrt{x-2}+3\sqrt{y-3}=9\\5\sqrt{x-2}=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3\sqrt{x-2}+3\sqrt{y-3}=9\\\sqrt{x-2}=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-2}=1\\\sqrt{y-3}=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=7\end{matrix}\right.\)

Bình luận (0)
Nguyễn Việt Lâm
1 giờ trước (15:21)

b.

ĐKXĐ: \(\left\{{}\begin{matrix}x\ne-1\\y\ne-4\end{matrix}\right.\)

\(\left\{{}\begin{matrix}\dfrac{15x}{x+1}+\dfrac{10}{y+4}=20\\\dfrac{4x}{x+1}-\dfrac{10}{y+4}=8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{15x}{x+1}+\dfrac{10}{y+4}=20\\\dfrac{19x}{x+1}=28\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{x+1}=\dfrac{28}{19}\\\dfrac{1}{y+4}=-\dfrac{4}{19}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}19x=28x+28\\4y+16=-19\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{28}{9}\\y=-\dfrac{35}{4}\end{matrix}\right.\)

Bình luận (0)
Nguyễn Thanh Hằng
5 giờ trước (12:05)

 Gọi \(M\left(x_o;y_o\right)\) là điểm cố định mà đường thẳng \(\left(dm\right):y=mx-2m+1\) luôn đi qua 

\(\Leftrightarrow y_o=mx_o+2m+1\)

\(\Leftrightarrow m\left(x_o+2\right)+1-y_o=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_o+2=0\\1-y_o=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_o=-2\\y_o=1\end{matrix}\right.\)

\(\Leftrightarrow M\left(-2;1\right)\) là điểm cố định mà đường thẳng \(\left(dm\right)\) luôn đi qua \(\left(đpcm\right)\)

Bình luận (0)
Thanh Hoàng Thanh
Hôm qua lúc 13:34

\(\left\{{}\begin{matrix}\left(x-2\right)\left(y+1\right)=xy\\\left(x+8\right)\left(y-2\right)=xy\end{matrix}\right.\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\\\ \) \(\left\{{}\begin{matrix}xy+x-2y-2-xy=0\\xy-2x+8y-16-xy=0\end{matrix}\right.\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \)\(\left\{{}\begin{matrix}x-2y=2\\-2x+8y=16\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x-2y=2\\-x+4y=8\end{matrix}\right.\)\(\left\{{}\begin{matrix}2y=10\\x-2y=2\end{matrix}\right.\) \(\left\{{}\begin{matrix}y=5\\x-10=2\end{matrix}\right.\)\(\left\{{}\begin{matrix}y=5\\x=12\end{matrix}\right.\)

Vậy hpt có nghiệm duy nhất là (x;y) = (12;5)

 

Bình luận (0)

Ta có: \(\left\{{}\begin{matrix}\left(x-2\right)\left(y+1\right)=xy\\\left(x+8\right)\left(y-2\right)=xy\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}xy+x-2y-2-xy=0\\xy-2x+8y-16-xy=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-2y-2=0\\-2x+8y-16=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2y=2\\-2x+8y=16\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-4y=4\\-2x+8y=16\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4y=20\\x-2y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=5\\x=2+2y=2+2\cdot5=12\end{matrix}\right.\)

Vậy: Hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=12\\y=5\end{matrix}\right.\)

Bình luận (0)
Quoc Tran Anh Le

Like và follow để ủng hộ và giúp đỡ chúng mình phát triển cuộc thi nha :>

Cuộc thi Toán Tiếng Anh VEMC | Facebook

Có câu hỏi hay? Gửi ngay chờ chi:

[Tiền sự kiện 1] Thử sức trí tuệ - Google Biểu mẫu

-------------------------------------------------------------------

[Toán.C37 _ 26.1.2021]

undefined

----------------------------------------------------------

Đáp án chuyên mục dãy số quy luật sẽ được giới thiệu trong bài đăng tới nha :>

tthnew
Hôm qua lúc 12:01

Xét hiệu hai vế bất đẳng thức đã cho ta được:

\(VT-VP={\dfrac { \left( a-b \right) ^{2}{c}^{2}}{ \left( b+c \right) \left( c +a \right) \left( a+b+c \right) }}+{\dfrac { \left( b-c \right) ^{2}{a }^{2}}{ \left( a+b \right) \left( c+a \right) \left( a+b+c \right) } }+{\dfrac { \left( ac-{b}^{2} \right) ^{2}}{ \left( a+b \right) \left( b+c \right) \left( a+b+c \right) }}\geqslant 0. \)

Đẳng thức xảy ra khi $a=b=c.$

Bình luận (0)
tthnew
Hôm qua lúc 12:05

Cách khác. 

Quy đồng, ta cần chứng minh:

\(2\,{a}^{3}{c}^{2}+{a}^{2}{b}^{3}-3\,{a}^{2}{b}^{2}c-2\,{a}^{2}b{c}^{2} +2\,{a}^{2}{c}^{3}+a{b}^{4}-3\,a{b}^{2}{c}^{2}+{b}^{4}c+{b}^{3}{c}^{2}\geq 0\)

Sử dụng bất đẳng thức AM-GM, ta có:

\(3\,a{b}^{2}{c}^{2}\leq \dfrac{5}{4}{a}^{2}{c}^{3}+\dfrac{1}{2}\,a{b}^{4}+\dfrac{1}{4} \,{b}^{4}c+{b}^{3}{c}^{2},\\2\,{a}^{2}b{c}^{2}\leq {\dfrac {7\,{a}^{3}{c} ^{2}}{10}}+\dfrac{1}{5}{a}^{2}{b}^{3}+\dfrac{3}{4}{a}^{2}{c}^{3}+{\dfrac {7\,{b}^{4}c }{20}},\\3\,{a}^{2}{b}^{2}c\leq {\dfrac {13\,{a}^{3}{c}^{2}}{10}}+\dfrac{4}{5}{a }^{2}{b}^{3}+\dfrac{1}{2}a{b}^{4}+\dfrac{2}{5}{b}^{4}c \)

Xong :D

 

Bình luận (0)
Admin
Hôm kia lúc 16:23

Điền số còn thiếu vào quy luật sau: 32 - 12 - 136 - 176 - ? - 196

⇒ \( 32 − 12 − 136 − 176 − 156 − 196\)

Bình luận (0)

Khoá học trên OLM của Đại học Sư phạm HN

Loading...

Khoá học trên OLM của Đại học Sư phạm HN