1² + 2³ + 3²
= 1 + 8 + 9
= 18
tíck mk nha
ai trả lời câu hỏi của mình đều được tick hết bất kể đúng sai
1² + 2³ + 3²
= 1 + 8 + 9
= 18
tíck mk nha
ai trả lời câu hỏi của mình đều được tick hết bất kể đúng sai
Chứng minh: \(A=\dfrac{2^3+1}{2^3-1}.\dfrac{3^3+1}{3^3-1}.\dfrac{4^3+1}{4^3-1}....\dfrac{9^3+1}{9^3-1}< \dfrac{3}{2}\)
\(B=\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+....+\dfrac{1}{n!}< 1\)
\(C=\dfrac{1}{2!}+\dfrac{2}{3!}+\dfrac{3}{4!}+....+\dfrac{n-1}{n!}< 1\)
D=\(\left(1-\dfrac{2}{6}\right)\left(1-\dfrac{2}{12}\right)\left(1-\dfrac{2}{20}\right)....\left(1-\dfrac{2}{n\left(n+1\right)}\right)>\dfrac{1}{3}\)
1) Chứng minh rằng: \(1+\dfrac{1}{2\sqrt{2}}+\dfrac{1}{3\sqrt{3}}+...+\dfrac{1}{n\sqrt{n}}< 2\sqrt{2}\left(n\in N\right)\)
2) Chứng minh rằng: \(\dfrac{2}{3}+\sqrt{n+1}< 1+\sqrt{2}+\sqrt{3}+...+\sqrt{n}< \dfrac{2}{3}\left(n+1\right)\sqrt{n}\)
3) \(2\sqrt{n}-3< \dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{n}}< 2\sqrt{n}-2\)
4) \(\dfrac{\sqrt{2}-\sqrt{1}}{2+1}+\dfrac{\sqrt{3}-\sqrt{2}}{3+2}+...+\dfrac{\sqrt{n+1}-\sqrt{n}}{n+1+n}< \dfrac{1}{2}\left(1-\dfrac{1}{\sqrt{n+1}}\right)\)
Rút gọn
\(P=\frac{1}{3}\left(\sqrt[3]{2}+1\right)\left(\sqrt{12\sqrt[3]{2}-15}+2\sqrt{3\sqrt[3]{4}-3}\right)\)
\(P=\frac{1}{3}\left(\sqrt[3]{2}+1\right)\left(\sqrt{12\sqrt[3]{2}-15}+2\sqrt{3\sqrt[3]{4}-3}\right)\)
\(P=\frac{1}{3}\left(\sqrt[3]{2}+1\right)\left(\sqrt{12\sqrt[3]{2}-15}+2\sqrt{3\sqrt[3]{4}-3}\right)\)
Tìm STN n biết
\(\dfrac{1}{\sqrt{1^3+2^3}}+\dfrac{1}{\sqrt{1^3+2^3+3^3}}+....+\dfrac{1}{\sqrt{1^3+2^3+3^3+...+n^3}}=\dfrac{2017}{2019}\)
Cho các số thực dương thỏa mãn xyz=1 Tìm GTLN của
a)A=\(\frac{1}{x^3+y^3+1}+\frac{1}{y^3+z^3+1}+\frac{1}{z^3+x^3+1}\)
b)B=\(\frac{1}{x^2+2y^2+3}+\frac{1}{y^2+2z^2+3}+\frac{1}{z^2+2x^2+3}\)
Giải phương trình:
1, \(\left(x^2+x+1\right)\left(x^4+2x^3+7x^2+26x+37\right)=5\left(x+3\right)^3\)
2, \(\left(x+1\right)^3+\left(x+3\right)^3+6\left(x+1\right)\left(x+7\right)\left(x+3\right)=8\left(x+2\right)^3\)
3, \(x^3+\left(x-1\right)^3+3x\left(x-1\right)\left(x^4+x\right)=\left(2x-1\right)^3\)
4, \(\dfrac{\left(x+1\right)^3}{3x+1}+\dfrac{x^3+5x+2}{x^3+2x+1}=x+3\)
5, \(\dfrac{5x^3+x^2+x+1}{4x^2+1}+\dfrac{6\left(4x^2+1\right)}{x^3+x^2+1}=x+7\)
6, \(\left(x^2-4x+1\right)^3+\left(8x-x^2+4\right)^3+\left(x-5\right)^3=125x^3\)
CMR:
\(\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+\dfrac{1}{4\sqrt{3}+3\sqrt{3}}+....+\dfrac{1}{\left(n+1\right)\left(\sqrt{n}+n\sqrt{n+1}\right)}< 1\)
Tìm số tự nhiên n biết rằng \(\frac{1}{\sqrt{1^3+2^3}}+\frac{1}{\sqrt{1^3+2^3+3^3}}+...+\frac{1}{\sqrt{1^3+2^3+...+n^3}}=\frac{2017}{2019}\)
Tính A=\(1+\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+....+\frac{1}{1+2+3+...+2014}\)
Tính tổng \(S=\dfrac{1}{1^4+1^2+1}+\dfrac{2}{2^4+2^2+1}+\dfrac{3}{3^4+3^2+1}+...+\dfrac{2017}{2017^4+2017^2+1}\)