Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lê Đình Quân

Cho các số thực dương thỏa mãn xyz=1 Tìm GTLN của

a)A=\(\frac{1}{x^3+y^3+1}+\frac{1}{y^3+z^3+1}+\frac{1}{z^3+x^3+1}\)

b)B=\(\frac{1}{x^2+2y^2+3}+\frac{1}{y^2+2z^2+3}+\frac{1}{z^2+2x^2+3}\)

Nguyễn Hoàng
21 tháng 2 2020 lúc 22:18

a) + \(x^3+y^3+1=\left(x+y\right)\left(x^2-xy+y^2\right)+1\ge\left(x+y\right)\left(2xy-xy\right)+xyz=xy\left(x+y+z\right)\)

Dấu "=" \(\Leftrightarrow x=y\)

+ Tương tự : \(y^3+z^3+1\ge yz\left(x+y+z\right)\). Dấu "=" \(\Leftrightarrow y=z\)

\(z^3+x^3+1\ge xz\left(x+y+z\right)\). Dấu "=" \(\Leftrightarrow x=z\)

Do đó: \(A\le\frac{1}{xy\left(x+y+z\right)}+\frac{1}{yz\left(x+y+z\right)}+\frac{1}{zx\left(x+y+z\right)}=\frac{x+y+z}{xyz\left(x+y+z\right)}=1\)

Dấu "=" \(\Leftrightarrow x=y=z=1\)

b) Bn đã từng hỏi và cũng là mk trả lời hehe

Khách vãng lai đã xóa

Các câu hỏi tương tự
Kun ZERO
Xem chi tiết
vn jat
Xem chi tiết
Kiều Ngọc Tú Anh
Xem chi tiết
Hoàng Quốc Tuấn
Xem chi tiết
bach nhac lam
Xem chi tiết
Nguyễn Thị Ngọc Hân
Xem chi tiết
Nguyễn Thị Thu Hằng
Xem chi tiết
Vua Phá Lưới
Xem chi tiết
Nguyễn Thị Hằng
Xem chi tiết