1. Cho các số thực dương x,y thỏa mãn x + xy + y = 8. Tính GTNN của biểu thức \(A=x^3+y^3+x^2+y^2+5\left(x+y\right)+\frac{1}{x}+\frac{1}{y}\)
2. Cho a,b,c > 1. Tính GTNN của biểu thức \(B=\frac{a^2}{a-1}+\frac{2b^2}{b-1}+\frac{3c^2}{c-1}\)
3. Cho 2 số \(x,y\ne0\) thỏa mãn đẳng thức sau: \(2x^2+\frac{1}{x^2}+\frac{y^2}{4}=4\). Tính GTLN của biểu thức \(C=\frac{1}{xy}\)
4. Cho các số thực dương a,b,c thỏa mãn abc = 1. Cmr: \(D=\frac{a^4}{b^2\left(c+2\right)}+\frac{b^4}{c^2\left(a+2\right)}+\frac{c^4}{a^2\left(b+2\right)}\ge1\)
5. Cho a,b,c là các số dương không lớn hơn 1. Cmr: \(\sqrt{a}+\sqrt{b}+\sqrt{c}\ge ab+bc+ca\)
6. Cho 2 số thực x,y thỏa mãn điều kiện \(x-3\sqrt{x+1}=3\sqrt{y+2}-y\). Cmr: \(\frac{9+3\sqrt{21}}{2}\le x+y\le9+3\sqrt{15}\).
7. Cho x,y,z là các số thực dương thỏa mãn x + y + z = 1. Cmr: \(\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\ge1+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\).
8. Cho x,y,z là các số thực dương thỏa mãn \(\sqrt{x^2+y^2}+\sqrt{y^2+z^2}+\sqrt{z^2+x^2}=2015.\) Tìm GTNN của biểu thức: \(P=\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\).
9. Cho các số thực dương x,y thỏa mãn \(\left(x+y-1\right)^2=xy\). Tìm GTNN của biểu thức: \(M=\frac{1}{xy}+\frac{1}{x^2+y^2}+\frac{\sqrt{xy}}{x+y}\).
10. Tìm m để phương trình \(mx^2-\left(5m-2\right)x+6m-5=0\) có 2 nghiệm nghịch đảo nhau.
11. Cho 2 số thực dương x,y thỏa mãn \(x^2+y\ge1\). Tìm GTNN của biểu thức: \(N=y^2+\left(x^2+2\right)^2\).
12. Cho 9 số thực \(a_1,a_2,...,a_9\) không nhỏ hơn -1 và \(a_1^3+a_2^3+...+a_9^3=0\). Tính GTLN của biểu thức \(Q=a_1+a_2+...+a_9\).
13. cho a,b,c > 0 và a + b + c = 1. Cmr: \(\sqrt{2015a+1}+\sqrt{2015b+1}+\sqrt{2015c+1}< 78\)
Mn làm giúp mk với. Mk đang cần gấp
Bài 1:
Áp dụng BĐT AM-GM:
\(9=x+y+xy+1=(x+1)(y+1)\leq \left(\frac{x+y+2}{2}\right)^2\)
\(\Rightarrow 4\leq x+y\)
Tiếp tục áp dụng BĐT AM-GM:
\(x^3+4x\geq 4x^2; y^3+4y\geq 4y^2\)
\(\frac{x}{4}+\frac{1}{x}\geq 1; \frac{y}{4}+\frac{1}{y}\geq 1\)
\(\Rightarrow x^3+y^3+x^2+y^2+5(x+y)+\frac{1}{x}+\frac{1}{y}\geq 5(x^2+y^2)+\frac{3}{4}(x+y)+2\)
Mà:
\(5(x^2+y^2)\geq 5.\frac{(x+y)^2}{2}\geq 5.\frac{4^2}{2}=40\)
\(\frac{3}{4}(x+y)\geq \frac{3}{4}.4=3\)
\(\Rightarrow A= x^3+y^3+x^2+y^2+5(x+y)+\frac{1}{x}+\frac{1}{y}\geq 40+3+2=45\)
Vậy \(A_{\min}=45\Leftrightarrow x=y=2\)
Bài 2:
\(B=\frac{a^2}{a-1}+\frac{2b^2}{b-1}+\frac{3c^2}{c-1}\)
\(B-24=\frac{a^2}{a-1}-4+\frac{2b^2}{b-1}-8+\frac{3c^2}{c-1}-12\)
\(=\frac{a^2-4a+4}{a-1}+\frac{2(b^2-4b+4)}{b-1}+\frac{3(c^2-4c+4)}{c-1}\)
\(=\frac{(a-2)^2}{a-1}+\frac{2(b-2)^2}{b-1}+\frac{3(c-2)^2}{c-1}\geq 0, \forall a,b,c>1\)
\(\Rightarrow B\geq 24\)
Vậy \(B_{\min}=24\Leftrightarrow a=b=c=2\)
Bài 3:
Áp dụng BĐT AM-GM cho các số dương ta có:
\(4=2x^2+\frac{1}{x^2}+\frac{y^2}{4}=x^2+x^2+\frac{1}{x^2}+\frac{y^2}{4}\geq 4\sqrt[4]{\frac{x^2y^2}{4}}\)
\(\Rightarrow 4\geq x^2y^2\Rightarrow 2\geq xy\geq -2\)
Ta thấy khi $xy$ càng tiến về $0$ và dương thì $C=\frac{1}{xy}$ càng lớn. Do đó $C=\frac{1}{xy}$ không có GTLN.
Bài 4:
Áp dụng BĐT AM-GM:
\(a+b+c\geq 3\sqrt[3]{abc}=3\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(D=\frac{(\frac{a^2}{b})^2}{c+2}+\frac{(\frac{b^2}{c})^2}{a+2}+\frac{(\frac{c^2}{a})^2}{b+2}\geq \frac{\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)^2}{c+2+a+2+b+2}\)
Và: \(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\geq \frac{(a+b+c)^2}{b+c+a}=a+b+c\)
\(\Rightarrow D\geq \frac{(a+b+c)^2}{a+b+c+6}(*)\)
Mà:
\(\frac{(a+b+c)^2}{(a+b+c+6}-1=\frac{(a+b+c)^2-(a+b+c)-6}{a+b+c+6}=\frac{(a+b+c-3)(a+b+c+2)}{a+b+c+6}\geq 0, \forall a+b+c\geq 3\)
\(\Rightarrow \frac{(a+b+c)^2}{a+b+c+6}\geq 1(**)\)
Từ \((*); (**)\Rightarrow D\geq 1\) (đpcm)
Dấu "=" xảy ra khi $a=b=c=1$.
Bài 5:
Áp dụng BĐT AM-GM cho các số dương ta có:
\(a^2+\sqrt{a}+\sqrt{a}\geq 3a\)
\(b^2+\sqrt{b}+\sqrt{b}\geq 3b\)
\(c^2+\sqrt{c}+\sqrt{c}\geq 3c\)
\(\Rightarrow (a^2+b^2+c^2)+2(\sqrt{a}+\sqrt{b}+\sqrt{c})\geq 3(a+b+c)(1)\)
Vì \(0< a,b,c\leq 1\Rightarrow 0< a+b+c\leq 3\)
\(\Rightarrow 3(a+b+c)\geq (a+b+c)^2(2)\)
Từ \((1);(2)\Rightarrow a^2+b^2+c^2+2(\sqrt{a}+\sqrt{b}+\sqrt{c})\geq (a+b+c)^2\)
\(\Leftrightarrow \sqrt{a}+\sqrt{b}+\sqrt{c}\geq ab+bc+ac\) (đpcm)
Dấu "=" xảy ra khi $a=b=c=1$.
Bài 7:
Vì $x+y+z=1$ nên:
\(\text{VT}=\sqrt{x+yz}+\sqrt{y+xz}+\sqrt{z+xy}=\sqrt{x(x+y+z)+yz}+\sqrt{y(x+y+z)+xz}+\sqrt{z(x+y+z)+xy}\)
\(=\sqrt{(x+y)(x+z)}+\sqrt{(y+z)(y+x)}+\sqrt{(z+x)(z+y)}\)
Áp dụng BĐT Bunhiacopxky:
\((x+y)(x+z)=(x+y)(z+x)\geq (x+\sqrt{yz})^2\)
\(\Rightarrow \sqrt{(x+y)(x+z)}\geq x+\sqrt{yz}\)
Hoàn toàn tương tự với các biểu thức còn lại: \(\left\{\begin{matrix} \sqrt{(y+z)(y+x)}\geq y+\sqrt{xz}\\ \sqrt{(z+x)(z+y)}\geq z+\sqrt{xy}\end{matrix}\right.\)
Cộng theo vế những BĐT vừa thu được:
\(\Rightarrow \text{VT}\geq x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{xz}=1+\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\)Ta có đpcm.
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)
Bài 10:
Để pt có thể có 2 nghiệm thì trước tiên $m\neq 0$
Với $m\neq 0$: \(\Delta=(5m-2)^2-4m(6m-5)=m^2+4>0\) nên pt luôn có 2 nghiệm.
2 nghiệm này $(x_1,x_2)$ là nghịch đảo của nhau
\(\Leftrightarrow x_1x_2=1\Leftrightarrow \frac{6m-5}{m}=1\Leftrightarrow m=1\) (t/m)
Vậy..........
lâu lâu mần 1 câu để thư dản ;
câu 6 : ta có : \(x-3\sqrt{x+1}=3\sqrt{y+2}-y\)
\(\Leftrightarrow x+y=3\left(\sqrt{x+1}+\sqrt{y+2}\right)\)
\(\Leftrightarrow\left(x+y\right)^2=9\left(x+y+3+2\sqrt{\left(x+1\right)\left(y+2\right)}\right)\)
\(\Leftrightarrow9\left(x+y\right)=\left(x+y\right)^2-27-18\sqrt{\left(x+1\right)\left(y+2\right)}\)
\(\ge\left(x+y\right)^2-27-9\left(x+y+3\right)\ge\left(x+y\right)^2-9\left(x+y\right)-54\)
\(\Leftrightarrow\left(x+y\right)^2-18\left(x+y\right)-54\le0\)
\(\Leftrightarrow9-3\sqrt{15}\le x+y\le9+3\sqrt{15}\)
bạn là người có thể tìm hiểu được đống đề này thì chắc làm thế này bn sẽ hiểu :)
13)Ta có:\(\sqrt{2015a+1}+\sqrt{2015b+1}+\sqrt{2015c+1}\le\sqrt{\left(2015a+1+2015b+1+2015c+1\right)\left(1+1+1\right)}\)
\(\Rightarrow VT\le\sqrt{2018.3}< \sqrt{2028.3}=78\)
=>đpcm
Câu 8:
Áp dụng BĐT AM-GM: \((y+z)^2\leq 2(y^2+z^2)\Rightarrow y+z\leq \sqrt{2(y^2+z^2)}\)
\(\Rightarrow \frac{x^2}{y+z}\geq \frac{x^2}{\sqrt{2(y^2+z^2)}}\)
Hoàn toàn TT với các phân thức còn lại và cộng theo vế:
\(P\geq \frac{x^2}{\sqrt{2(y^2+z^2)}}+\frac{y^2}{\sqrt{2(x^2+z^2)}}+\frac{z^2}{\sqrt{2(x^2+y^2)}}\)
Đặt \((\sqrt{x^2+y^2}, \sqrt{y^2+z^2}, \sqrt{z^2+x^2})=(a,b,c)\). Bài toán trở thành:
Cho $a,b,c>0$ sao cho $a+b+c=2015$. Tìm min:
\(P=\frac{a^2+c^2-b^2}{2\sqrt{2}b}+\frac{b^2+c^2-a^2}{2\sqrt{2}a}+\frac{b^2+a^2-c^2}{2\sqrt{2}c}\)
Thật vậy, áp dụng BĐT Cauchy-Schwarz:
\(P=\frac{1}{2\sqrt{2}}\left(\frac{a^2}{b}+\frac{c^2}{b}+\frac{b^2}{a}+\frac{c^2}{a}+\frac{b^2}{c}+\frac{a^2}{c}\right)-\frac{1}{2\sqrt{2}}(b+a+c)\)
\(\geq \frac{1}{2\sqrt{2}}.\frac{(a+c+b+c+b+a)^2}{2(a+b+c)}-\frac{1}{2\sqrt{2}}(a+b+c)=\frac{\sqrt{2}}{4}(a+b+c)=\frac{2015\sqrt{2}}{4}\)
Vậy..........
Bài 12:
Vì \(a_1\geq -1\Rightarrow (a_1+1)(2a_1-1)^2\geq 0\)
\(\Leftrightarrow 4a_1^3-3a_1+1\geq 0\)
\(\Leftrightarrow a_1\leq \frac{1}{3}(4a_1^3+1)\)
Hoàn toàn tương tự với \(a_2,....,a_9\) và cộng theo vế:
\(\Rightarrow a_1+a_2+....+a_9\leq \frac{1}{3}\left[(a_1^3+a_2^3+..+a_9^3)+9\right]\)
\(\Leftrightarrow Q\leq 3\)
Vậy \(Q_{\max}=3\). Dấu "=" xảy ra khi \((a_1,a_2,....,a_9)=(-1,\frac{1}{2}, \frac{1}{2},..., \frac{1}{2})\) và hoán vị.
Bài 9:
Áp dụng BĐT AM-GM:
\((x+y-1)^2=xy\leq \frac{(x+y)^2}{4}\)
\(\Leftrightarrow (2x+2y-2)^2\leq (x+y)^2\)
\(\Leftrightarrow (x+y-2)(3x+3y-2)\leq 0\Rightarrow \frac{2}{3}\leq x+y\leq 2(1)\)
\(2\geq x+y\geq 2\sqrt{xy}\Rightarrow xy\leq 1(2)\)
Từ $(1);(2)$:
Áp dụng BĐT Cauchy Schwarz:
\(\frac{1}{2xy}+\frac{1}{x^2+y^2}\geq \frac{4}{(x+y)^2}\geq \frac{4}{2^2}=1\)
Áp dụng BĐT AM-GM: \(\frac{1}{2xy}+\frac{\sqrt{xy}}{x+y}\geq 2\sqrt{\frac{1}{2\sqrt{xy}(x+y)}}\geq 2\sqrt{\frac{1}{2.1.2}}=1\)
Cộng theo vế:
\(\Rightarrow M=\frac{1}{xy}+\frac{1}{x^2+y^2}+\frac{\sqrt{xy}}{x+y}\geq 2\)
Vậy \(M_{\min}=2\Leftrightarrow x=y=1\)
Câu 11: Mình nghĩ sai đề. $x,y$ không âm thay vì dương.
lm bài nữa thôi có j bữa sau mk lm tiếp
bài 8:
bất đẳng thức mincopxki : \(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\ge\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\)
khi đó ta chỉ cần cho \(b=0;c=0\) thì ta sẽ có được bất đẳng thức mới
\(\sqrt{a^2}+\sqrt{d^2}\ge\sqrt{a^2+d^2}\)
áp dụng ta có : \(2015=\sqrt{x^2+y^2}+\sqrt{y^2+z^2}+\sqrt{z^2+x^2}\)
\(\le2\left(x+y+z\right)\) (nó dương nên bỏ căng ko dổi dấu nhé )
\(\Leftrightarrow x+y+z\ge\frac{2015}{2}\)
ta có : \(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}\ge\frac{2015}{4}\) (cauchyswarz engel)
dấu "=" xảy ra khi \(a=b=c=\frac{2015}{3\sqrt{2}}\)