\(\Leftrightarrow\dfrac{1}{3}+\dfrac{1}{6}+...+\dfrac{1}{n\left(n+1\right):2}=\dfrac{2017}{2019}\)
\(\Leftrightarrow2\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{n}-\dfrac{1}{n+1}\right)=\dfrac{2017}{2019}\)
=>1/2-1/n+1=2017/4038
=>1/n+1=1/2019
=>n=2018