Tìm x, biết:
a) \(1-3\left|2x-3\right|=-\dfrac{1}{2}\)
b) \(\left(\left|x\right|-0,2\right).\left(x^3-8\right)=0\)
Tìm x, biết:
a) \(1-3\left|2x-3\right|=-\dfrac{1}{2}\)
b) \(\left(\left|x\right|-0,2\right).\left(x^3-8\right)=0\)
\(a,1-3\left|2x-3\right|=-\dfrac{1}{2}\\ 3\left|2x-3\right|=1+\dfrac{1}{2}\\ 3\left|2x-3\right|=\dfrac{3}{2}\\ \left|2x-3\right|=\dfrac{3}{2}:3\\ \left|2x-3\right|=\dfrac{9}{2}\\ \Rightarrow\left[{}\begin{matrix}2x-3=\dfrac{9}{2}\\2x-3=-\dfrac{9}{2}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=\dfrac{15}{2}\\2x=-\dfrac{3}{2}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{15}{4}\\x=-\dfrac{3}{4}\end{matrix}\right.\)
Vậy `x in {15/4;-3/4}`
\(b,\left(\left|x\right|-0,2\right)\left(x^3-8\right)=0\\ \left(\left|x\right|-0,2\right)\left(x-2\right)\left(x^2+2x+4\right)=0\\ \Rightarrow\left[{}\begin{matrix}\left|x\right|-0,2=0\\x-2=0\\x^2+2x+4=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}\left|x\right|=0,2\\x=2\\\left(x+1\right)^2+3=0\left(lọai\right)\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=0,2\\x=-0,2\\x=2\end{matrix}\right.\)
Vậy `x in {+-0,2;2}`
Cho tam giác ABC vuông tại A có đường cao AH, biết CH = 9 cm và BH = 4 cm. Gọi D là điểm đối xứng của A qua BC và E là giao điểm của hai tia CA, DB. Qua E kẻ đường thẳng vuông góc với BC cắt đường thẳng BC tại F, cắt đường thẳng AB tại G. Qua C kẻ đường thẳng song song với AG cắt đường thẳng AD tại K. a) Tính độ dài đường cao AH, cạnh AB của tam giác ABC b) Chứng minh AC bình = CH.HB+ AH.HK c) Chứng minh rằng FA là tiếp tuyến của đường tròn đường kính BC
a: BC=BH+CH
=4+9
=13(cm)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH^2=HB\cdot HC\)
=>\(AH^2=4\cdot9=36\)
=>\(AH=\sqrt{36}=6\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AB^2=BH\cdot BC\)
=>\(AB^2=4\cdot13=52\)
=>\(AB=\sqrt{52}=2\sqrt{13}\left(cm\right)\)
b:
CK//AB
CA\(\perp\)AB
Do đó: CK\(\perp\)CA tại C
Xét ΔACK vuông tại C có CH là đường cao
nên \(HA\cdot HK=CH^2\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(CH\cdot HB=HA^2\)
Xét ΔAHC vuông tại H có \(AC^2=CH^2+HA^2\)
=>\(AC^2=HA\cdot HK+CH\cdot HB\)
c: Gọi M là trung điểm của BC
Ta có: ΔABC vuông tại A
=>ΔABC nội tiếp đường tròn đường kính BC
=>ΔABC nội tiếp (M)
Xét tứ giác BAEF có
\(\widehat{BFE}+\widehat{BAE}=90^0+90^0=180^0\)
Do đó: BAEF là tứ giác nội tiếp
=>\(\widehat{BAF}=\widehat{BEF}\)(1)
Ta có: AH\(\perp\)BC
EF\(\perp\)BC
Do đó: AH//EF
=>AD//EF
=>\(\widehat{ADB}=\widehat{BEF}\)(hai góc so le trong)(2)
Xét ΔCAD có
CH là đường cao
CH là đường trung tuyến
Do đó: ΔCAD cân tại C
=>CA=CD
Xét ΔBAD có
BH là đường cao
BH là đường trung tuyến
Do đó: ΔBAD cân tại B
=>\(\widehat{BAD}=\widehat{BDA}\left(3\right)\)
Từ (1),(2),(3) suy ra \(\widehat{BAD}=\widehat{BAF}\)
mà \(\widehat{BAD}=\widehat{ACB}\left(=90^0-\widehat{ABC}\right)\)
nên \(\widehat{BAF}=\widehat{ACB}\)
Ta có: MA=MB
=>ΔMAB cân tại M
=>\(\widehat{MAB}=\widehat{MBA}\)
=>\(\widehat{MAB}=\widehat{ABC}\)
Ta có: \(\widehat{MAF}=\widehat{MAB}+\widehat{BAF}\)
\(=\widehat{ABC}+\widehat{ACB}\)
\(=90^0\)
=>MA\(\perp\)FA tại A
Xét (M) có
MA là bán kính
FA\(\perp\)MA tại A
Do đó: FA là tiếp tuyến của (M)
hay FA là tiếp tuyến của đường tròn đường kính BC
Cho tam giác ABC vuông tại A có đường cao AH, biết CH = 9 cm và BH = 4 cm. Gọi D là điểm đối xứng của A qua BC và E là giao điểm của hai tia CA, DB. Qua E kẻ đường thẳng vuông góc với BC cắt đường thẳng BC tại F, cắt đường thẳng AB tại G. Qua C kẻ đường thẳng song song với AG cắt đường thẳng AD tại K. a) Tính độ dài đường cao AH, cạnh AB của tam giác ABC b) Chứng minh AC bình = CH.HB+ AH.HK c) Chứng minh rằng FA là tiếp tuyến của đường tròn đường kính BC
a: 2;3;5;7;11;13;17;19
b: M={0;1;2;3;4}
c: Các bội của 6 trong các số -12;-6;-4;-2;0;2;4;6;12 là:
A={-12;-6;0;6;12}
Các ước của 12 trong các số -12;-6;-4;-2;0;2;4;6;12 là:
B={-12;-6;-4;-2;2;4;6;12}
d: \(29-\left[16+3\cdot\left(51-49\right)\right]\)
\(=29-\left[16+3\cdot2\right]\)
\(=29-16-6\)
=13-6=7
e: \(75-\left(3\cdot5^2-4\cdot2^3\right)\)
\(=75-\left(3\cdot25-4\cdot8\right)\)
\(=75-75+32\)
=32
f: \(2^2\cdot3-\left(1^{10}+8\right):3^2\)
\(=4\cdot3-\dfrac{1+8}{9}\)
\(=12-\dfrac{9}{9}\)
=12-1
=11
g: \(M=3^8:3^6=3^{8-6}=3^2=9\)
Cho đường tròn (O;R) và một điểm A nằm ngoài (O).Từ A kẻ hai tiếp tuyến AM,AN của (O) (M,N là hai tiếp điểm) a) Tam giác AMN là tam giác gì?Vì sao? b) Đường thẳng vuông góc với OM tại O cắt đường thẳng AN tại P. Chứng minh AP=PO c)Gọi H là giao điểm của AO và MN.Chứng mình OH×OA=R2
Giúp mik với ạ!
a: Xét (O) có
AM,AN là tiếp tuyến
Do đó: AM=AN và OA là phân giác của góc MON
Xét ΔAMN có AM=AN
nên ΔAMN cân tại A
b: Ta có: \(\widehat{POA}+\widehat{MOA}=\widehat{MOP}=90^0\)
\(\widehat{PAO}+\widehat{NOA}=90^0\)(ΔNOA vuông tại N)
mà \(\widehat{MOA}=\widehat{NOA}\)(OA là phân giác của góc MON)
nên \(\widehat{POA}=\widehat{PAO}\)
=>ΔPAO cân tại P
c: Ta có: AM=AN
=>A nằm trên đường trung trực của MN(1)
Ta có: OM=ON
=>O nằm trên đường trung trực của MN(2)
Từ (1) và (2) suy ra OA là đường trung trực của MN
=>OA\(\perp\)MN tại H
Xét ΔOMA vuông tại M có MH là đường cao
nên \(OH\cdot OA=OM^2=R^2\)
giúp mink bài này với mik cần gấp:
lớp 6a có 50 hs đang tham gia cuộc thi đua của nhà trường .Trong đợt thi này,mỗi hs đạt từ 5 hoa điểm tốt trở nên(điểm 9,10) sẽ đc cộng 5 điểm,mỗi hs đi học muộn bị trừ 3 điểm và hs nghỉ học sẽ bị trừ 1 điểm.Tính số điểm của lớp 6a đạt đc trong cả đợt thi đua.Biết rằng trong cả đợt thi đua ,lớp 6a có 35 bạn đạt từ 5 hoa điểm tốt trở nên(điểm 9,10),10 hs đi học muộn và 5 hs nghỉ học
huhu còn tận 7 bài toán tự luận dài dằng dặng nữa
84:x,180:x,240:x và x>6
\(84=2^2\cdot3\cdot7;180=2^2\cdot3^2\cdot5;240=2^4\cdot3\cdot5\)
=>\(ƯCLN\left(84;180;240\right)=2^2\cdot3=12\)
Ta có: \(84⋮x;180⋮x;240⋮x\)
=>\(x\inƯC\left(84;180;240\right)\)
=>\(x\inƯ\left(12\right)\)
=>\(x\in\left\{1;-1;2;-2;3;-3;4;-4;6;-6;12;-12\right\}\)
mà x>6
nên x=12
1, Cho tam giác DEF vuông tại D. M là trung điểm EF kẻ MI vuông góc DE, MK vuông góc DF a, Tứ giác DIMK là hình chữ nhật b, Trên tia đối MD lấy H: MD=MH. Chứng minh DEHF là hình chữ nhật
a: Xét tứ giác DIMK có
\(\widehat{DIM}=\widehat{DKM}=\widehat{KDI}=90^0\)
=>DIMK là hình chữ nhật
b: Xét tứ giác DEHF có
M là trung điểm chung của DH và EF
=>DEHF là hình bình hành
Hình bình hành DEHF có \(\widehat{FDE}=90^0\)
nên DEHF là hình chữ nhật
BT3: Thực hiện phép tính a, 3/ x-1 + 5/ x +1 - x/x^2-1
a: ĐKXĐ: \(x\notin\left\{1;-1\right\}\)
\(\dfrac{3}{x-1}+\dfrac{5}{x+1}-\dfrac{x}{x^2-1}\)
\(=\dfrac{3}{x-1}+\dfrac{5}{x+1}-\dfrac{x}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{3\left(x+1\right)+5\left(x-1\right)-x}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{3x+3+5x-5-x}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{7x-2}{\left(x-1\right)\left(x+1\right)}\)
Cho đường tròn tâm O bán kính R . Tại điểm M nằm ngoài đường tròn kẻ các tiếp tuyến MA,MB với đường tròn ( A,B là các tiếp điểm ) . Vẽ đường thẳng MCD không đi qua tâm ( C nằm giữa M và D ) . OM cắt AB và (O) tại H , gọi I là trung điểm OM
a) CM 4 điểm M,A,O,B thuộc 1 đường tròn
b) CM: AB vuông góc với OM
a: Xét tứ giác MAOB có
\(\widehat{MAO}+\widehat{MBO}=90^0+90^0=180^0\)
=>MAOB là tứ giác nội tiếp
=>M,A,O,B cùng thuộc một đường tròn
b; Xét (O) có
MA,MB là tiếp tuyến
Do đó: MA=MB
=>M nằm trên đường trung trực của AB(1)
ta có: OA=OB
=>O nằm trên đường trung trực của AB(2)
Từ (1) và (2) suy ra MO là đường trung trực của AB
=>MO\(\perp\)AB