Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Như Quỳnh
Xem chi tiết
Pox Pox
Xem chi tiết
Phạm Thị Thùy Linh
2 tháng 9 2019 lúc 12:50

\(a,\left(-4xy-5\right)\left(5-4xy\right)=\left(4xy+5\right)\left(4xy-5\right).\)

\(=\left(4xy\right)^2-5^2=16x^2y^2-25\)

\(b,\left(a^2b+ab^2\right)\left(ab^2-a^2b\right)=\left(ab^2+a^2b\right)\left(ab^2-a^2b\right)\)

\(=\left(ab^2\right)^2-\left(a^2b\right)^2=a^2b^4-a^4b^2\)

\(c,\left(3x-4\right)^2+2\left(3x-4\right)\left(4-x\right)+\left(4-x\right)^2\)

\(=\left[\left(3x-4\right)+\left(4-x\right)\right]^2\)

\(=\left(3x-4+4-x\right)^2=\left(2x\right)^2=4x^2\)

\(d,\left(a^2+ab+b^2\right)\left(a^2-ab+b^2\right)-\left(a^4+b^4\right)\)

\(=\left[\left(a^2+b^2\right)+ab\right]\left[\left(a^2+b^2\right)-ab\right]-\left(a^4+b^4\right)\)

\(=\left(a^2+b^2\right)^2-\left(ab\right)^2-a^4-b^4\)

\(=a^4+2a^2b^2+b^4-a^2b^2-a^4-b^4=a^2b^2\)

Mai Lan Anh
Xem chi tiết
Trọng Chi Ca Vâu
26 tháng 5 2017 lúc 15:38

1. (a2+b2+ab)2-a2b2-b2c2-c2a2

=a4+b4+a2b2+2(a2b2+ab3+a3b)-a2b2-b2c2-c2a2

=a4+b4+2a2b2+2ab3+2a3b-b2c2-c2a2

=(a2+b2)2+2ab(a2+b2)-c2(a2+b2)

=(a2+b2)[(a+b)2-c2]

=(a2+b2)(a+b+c)(a+b-c)

2. a4+b4+c4-2a2b2-2b2c2-2a2c2=(a2-b2-c2)2

3. a(b3-c3)+b(c3-a3)+c(a3-b3)

=ab3-ac3+bc3-ba3+ca3-cb3

=a3(c-b)+b3(a-c)+c3(b-a)

=a3(c-b)-b3(c-a)+c3(b-a)

=a3(c-b)-b3(c-b+b-a)+c3(b-a)

=a3(c-b)-b3(c-b)-b3(b-a)+c3(b-a)

=(c-b)(a-b)(a2+ab+b2)-(b-a)(b-c)(b2+bc+c2)

=(a-b)(c-b)(a2+ab+2b2+bc+c2)

4. a6-a4+2a3+2a2=a4(a+1)(a-1)+2a2(a+1)=(a+1)(a5-a4+2a2)=a2(a+1)(a3-a2+2)

5. (a+b)3-(a-b)3=(a+b-a+b)[(a+b)2+(a+b)(a-b)+(a-b)2]

=2b(3a2+b2)

6. x3-3x2+3x-1-y3=(x-1)3-y3=(x-1-y)[(x-1)2+(x-1)y+y2]

=(x-y-1)(x2+y2+xy-2x-y+1)

7. xm+4+xm+3-x-1=xm+3(x+1)-(x+1)=(x+1)(xm+3-1)

(Đúng nhớ like nhá !)

Mai Lan Anh
26 tháng 5 2017 lúc 10:49

Minh Hải,Lê Thiên Anh,Nguyễn Huy Tú,Ace Legona,...giúp mk vs mai mk đi hk rùi

Tú Nguyễn
Xem chi tiết
Nguyễn Việt Lâm
9 tháng 2 2020 lúc 6:08

a/ Với mọi số thực ta luôn có:

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)

\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)

Lại có do a;b;c là ba cạnh của 1 tam giác nên theo BĐT tam giác ta có:

\(a+b>c\Rightarrow ac+bc>c^2\)

\(a+c>b\Rightarrow ab+bc>b^2\)

\(b+c>a\Rightarrow ab+ac>a^2\)

Cộng vế với vế: \(2\left(ab+bc+ca\right)>a^2+b^2+c^2\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
9 tháng 2 2020 lúc 6:11

b/

Do a;b;c là ba cạnh của tam giác nên các nhân tử vế phải đều dương

Ta có:

\(\left(a+b-c\right)\left(b+c-a\right)\le\frac{1}{4}\left(a+b-c+b+c-a\right)^2=b^2\)

Tương tự: \(\left(a+b-c\right)\left(a+c-b\right)\le a^2\)

\(\left(b+c-a\right)\left(a+c-b\right)\le c^2\)

Nhân vế với vế:

\(a^2b^2c^2\ge\left(a+b-c\right)^2\left(b+c-a\right)^2\left(a+c-b\right)^2\)

\(\Leftrightarrow abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(a+c-b\right)\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
9 tháng 2 2020 lúc 6:14

\(VT=2a^2b^2+2b^2c^2+2c^2a^2-a^4-b^4-c^4\)

\(=4a^2b^2-\left(a^4+b^4+c^4+2a^2b^2-2b^2c^2-2c^2a^2\right)\)

\(=\left(2ab\right)^2-\left(a^2+b^2-c^2\right)^2\)

\(=\left(2ab+a^2+b^2-c^2\right)\left(2ab-a^2-b^2+c^2\right)\)

\(=\left[\left(a+b\right)^2-c^2\right]\left[c^2-\left(a-b\right)^2\right]\)

Mặt khác theo BĐT tam giác ta có:

\(\left\{{}\begin{matrix}a+b>c\\\left|a-b\right|< c\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left(a+b\right)^2>c^2\\\left(a-b\right)^2< c^2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left(a+b\right)^2-c^2>0\\c^2-\left(a-b\right)^2>0\end{matrix}\right.\)

\(\Rightarrow VT>0\)

Khách vãng lai đã xóa
Eren
Xem chi tiết
soyeon_Tiểubàng giải
18 tháng 6 2017 lúc 15:50

Ta có:

(a + b + c)2 = 0 => a2 + b2 + c2 + 2(ab + bc + ca) = 0

=> a2 + b2 + c2 = -2(ab + bc + ca)

=> (a2 + b2 + c2)2 = 4(ab + bc + ca)2

=> a4 + b4 + c4 + 2(a2b2 + b2c2 + c2a2) = 4[a2b2 + b2c2 + c2a2 + 2(ab2c + bc2a + ca2b)

=> a4 + b4 + c4 = 2(a2b2 + b2c2 + c2a2) + 8abc(a + b + c)

=> a4 + b4 + c4 = 2(a2b2 + b2c2 + c2a2) (vì a + b + c = 0) (1)

Có: \(\left\{{}\begin{matrix}2\left(a^2b^2+b^2c^2+c^2a^2\right)=2\left(a^2b^2+b^2c^2+c^2a^2+2ab^2c+2a^2bc+2abc^2\right)\\2\left(a^4+b^4+c^4\right)=a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}2\left(a^2b^2+b^2c^2+c^2a^2\right)=2\left(ab+bc+ca\right)^2\left(2\right)\\a^4+b^4+c^4=\dfrac{\left(a^2+b^2+c^2\right)}{2}\left(3\right)\end{matrix}\right.\)

Từ (1); (2) và (3) ta có đpcm

Pham Van Hung
Xem chi tiết
Agatsuma Zenitsu
23 tháng 1 2020 lúc 22:08

Ta chứng minh: \(2\left(a^2-ab+b^2\right)^2\ge b^4+a^4\left(1\right)\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)^2\ge0\)( Luôn đúng \(\forall a;b\))

Tương tự có: \(2\left(b^2-bc+c^2\right)^2\ge b^4+c^4\left(2\right)\)

Và: \(2\left(c^2-ca+a^2\right)^2\ge a^4+c^4\left(3\right)\)

Ta nhân các vế trên ta được: \(8\left(a^2-ab+b^2\right)^2\left(b^2-bc+c^2\right)^2\left(c^2-ca+a^2\right)^2\ge\left(a^4+b^4\right)\left(b^4+c^4\right)\left(c^4+a^4\right)=8\)

Hay: \(\left(a^2-ab+b^2\right)\left(b^2-bc+c^2\right)\left(c^2-ca+a^2\right)\ge1\)

Dấu " = " xảy ra \(\Leftrightarrow a=b=c\)

Khách vãng lai đã xóa
Buffalo
24 tháng 1 2020 lúc 7:18

Trâu bò:

Giả sử c = min{a,b,c}

Đặt a =x +c; b = y +c;c=c thì x,y >= 0

C/m: \(8\left[\left(a^2-ab+b^2\right)\left(b^2-bc+c^2\right)\left(c^2-ca+a^2\right)\right]^2\ge\left(a^4+b^4\right)\left(b^4+c^4\right)\left(c^4+a^4\right)\)

Xét hiệu hai vế thu được:

\(c*(12*x^3*y^8-8*x^4*y^7+16*x^5*y^6+16*x^6*y^5-8*x^7*y^4+12*x^8*y^3)+c^2*(18*x^2*y^8-16*x^3*y^7+60*x^4*y^6+60*x^6*y^4-16*x^7*y^3+18*x^8*y^2)+c^3*(12*x*y^8+16*x^2*y^7+88*x^4*y^5+88*x^5*y^4+16*x^7*y^2+12*x^8*y)+c^4*(6*y^8+16*x*y^7+32*x^2*y^6-32*x^3*y^5+242*x^4*y^4-32*x^5*y^3+32*x^6*y^2+16*x^7*y+6*x^8)+7*x^4*y^8+c^5*(16*y^7+16*x*y^6+88*x^3*y^4+88*x^4*y^3+16*x^6*y+16*x^7)-16*x^5*y^7+c^6*(24*y^6-16*x*y^5+60*x^2*y^4+60*x^4*y^2-16*x^5*y+24*x^6)+24*x^6*y^6+c^7*(16*y^5-8*x*y^4+16*x^2*y^3+16*x^3*y^2-8*x^4*y+16*x^5)-16*x^7*y^5+c^8*(8*y^4-16*x*y^3+24*x^2*y^2-16*x^3*y+8*x^4)+7*x^8*y^4\)Dấu " * " là nhân.

Dễ thấy nó đúng -> qed

Khách vãng lai đã xóa
Nguyễn Thiều Công Thành
Xem chi tiết
Tuyển Trần Thị
31 tháng 10 2017 lúc 6:13

đúng rồi

Nguyễn Văn Hòa
1 tháng 11 2017 lúc 19:05

 chó điên

Mai Thành Đạt
Xem chi tiết
Nguyễn Huy Thắng
7 tháng 3 2018 lúc 19:05

GTLN ?! Rìa lý :"<

bach nhac lam
Xem chi tiết
tthnew
11 tháng 11 2019 lúc 20:40

2/ Không mất tính tổng quát, giả sử \(c=min\left\{a,b,c\right\}\).

Nếu abc = 0 thì có ít nhất một số bằng 0. Giả sử c = 0. BĐT quy về: \(a^2+b^2\ge2ab\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)

Đẳng thức xảy ra khi a = b; c = 0.

Nếu \(abc\ne0\). Chia hai vế của BĐT cho \(\sqrt[3]{\left(abc\right)^2}\)

BĐT quy về: \(\Sigma_{cyc}\sqrt[3]{\frac{a^4}{b^2c^2}}+3\ge2\Sigma_{cyc}\sqrt[3]{\frac{ab}{c^2}}\)

Đặt \(\sqrt[3]{\frac{a^2}{bc}}=x;\sqrt[3]{\frac{b^2}{ca}}=y;\sqrt[3]{\frac{c^2}{ab}}=z\Rightarrow xyz=1\)

Cần chúng minh: \(x^2+y^2+z^2+3\ge2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

\(\Leftrightarrow x^2+y^2+z^2+2xyz+1\ge2\left(xy+yz+zx\right)\) (1)

Theo nguyên lí Dirichlet thì trong 3 số x - 1, y - 1, z - 1 tồn tại ít nhất 2 số có tích không âm. Không mất tính tổng quát, giả sử \(\left(x-1\right)\left(y-1\right)\ge0\)

\(\Rightarrow2xyz\ge2xz+2yz-2z\). Thay vào (1):

\(VT\ge x^2+y^2+z^2+2xz+2yz-2z+1\)

\(=\left(x-y\right)^2+\left(z-1\right)^2+2xy+2xz+2yz\)

\(\ge2\left(xy+yz+zx\right)\)

Vậy (1) đúng. BĐT đã được chứng minh.

Đẳng thức xảy ra khi a = b = c hoặc a = b, c = 0 và các hoán vị.

Check giúp em vs @Nguyễn Việt Lâm, bài dài quá:(

Khách vãng lai đã xóa
tthnew
6 tháng 7 2020 lúc 7:23

Cách khác câu 2:Đặt \(\left(a,b,c\right)=\left(a^3,b^3,c^3\right)\)

Có: \(VT-VP=\frac{1}{6} \sum\, \left( 3\,{a}^{2}+4\,ab+2\,ac+3\,{b}^{2}+2\,bc \right) \left( a -b \right) ^{2} \left( a+b-c \right) ^{2}+\frac{2}{3} \sum \,{a}^{2}{b}^{2} \left( a -b \right) ^{2} \geq 0\)

Bất đẳng thức trên vẫn đúng trong trường hợp $a,b,c$ là các số thực.

Thật vậy ta chỉ cần chứng minh$:$

\(\frac{1}{6}\sum \left( 3\,{a}^{2}+4\,ab+2\,ac+3\,{b}^{2}+2\,bc \right) \left( a -b \right) ^{2} \left( a+b-c \right) ^{2} \geq 0\)

Chú ý \(\sum\left(a-b\right)\left(a+b-c\right)=0\)

Ta đưa về chứng minh: \(\sum (3\,{a}^{2}+4\,ab+2\,ac+3\,{b}^{2}+2\,bc) \geq 0 \,\,\,\,\,\,(1)\)

\(\sum \left( 3\,{a}^{2}+2\,ab+4\,ac+2\,bc+3\,{c}^{2} \right) \left( 3\,{a} ^{2}+4\,ab+2\,ac+3\,{b}^{2}+2\,bc \right) \geq 0 \,\,\,\,(2)\)

$(1)$ dễ chứng minh bằng tam thức bậc $2$.

Chứng minh $(2):$

$$\text{VT} = {\frac {196\, \left( a+b+c \right) ^{4}}{27}} + \sum{\frac { \left( a-b \right) ^{2} \left( 47\,a+26\,c+47\,b \right) ^{2}
}{2538}}+\sum {\frac {328\,{c}^{2} \left( a-b \right) ^{2}}{141}} \geq 0$$

Xong.

bach nhac lam
19 tháng 10 2019 lúc 17:51
Khách vãng lai đã xóa