Chương 1: MỆNH ĐỀ, TẬP HỢP

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Tú Nguyễn

Cho a,b,c là độ dài 3 cạnh của 1 tam giác cm:

a)\(ab+bc+ca\le a^2+b^2+c^2< 2\left(ab+bc+ca\right)\)

b)\(abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(a+c-b\right)\)

c)\(2a^2b^2+2b^2c^2+2c^2a^2-a^4-b^4-c^4>0\)

d)\(a\left(b-c\right)^2+b\left(c-a\right)^2+c\left(a+b\right)^2>a^3+b^3+c^3\)

Nguyễn Việt Lâm
9 tháng 2 2020 lúc 6:08

a/ Với mọi số thực ta luôn có:

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)

\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)

Lại có do a;b;c là ba cạnh của 1 tam giác nên theo BĐT tam giác ta có:

\(a+b>c\Rightarrow ac+bc>c^2\)

\(a+c>b\Rightarrow ab+bc>b^2\)

\(b+c>a\Rightarrow ab+ac>a^2\)

Cộng vế với vế: \(2\left(ab+bc+ca\right)>a^2+b^2+c^2\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
9 tháng 2 2020 lúc 6:11

b/

Do a;b;c là ba cạnh của tam giác nên các nhân tử vế phải đều dương

Ta có:

\(\left(a+b-c\right)\left(b+c-a\right)\le\frac{1}{4}\left(a+b-c+b+c-a\right)^2=b^2\)

Tương tự: \(\left(a+b-c\right)\left(a+c-b\right)\le a^2\)

\(\left(b+c-a\right)\left(a+c-b\right)\le c^2\)

Nhân vế với vế:

\(a^2b^2c^2\ge\left(a+b-c\right)^2\left(b+c-a\right)^2\left(a+c-b\right)^2\)

\(\Leftrightarrow abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(a+c-b\right)\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
9 tháng 2 2020 lúc 6:14

\(VT=2a^2b^2+2b^2c^2+2c^2a^2-a^4-b^4-c^4\)

\(=4a^2b^2-\left(a^4+b^4+c^4+2a^2b^2-2b^2c^2-2c^2a^2\right)\)

\(=\left(2ab\right)^2-\left(a^2+b^2-c^2\right)^2\)

\(=\left(2ab+a^2+b^2-c^2\right)\left(2ab-a^2-b^2+c^2\right)\)

\(=\left[\left(a+b\right)^2-c^2\right]\left[c^2-\left(a-b\right)^2\right]\)

Mặt khác theo BĐT tam giác ta có:

\(\left\{{}\begin{matrix}a+b>c\\\left|a-b\right|< c\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left(a+b\right)^2>c^2\\\left(a-b\right)^2< c^2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left(a+b\right)^2-c^2>0\\c^2-\left(a-b\right)^2>0\end{matrix}\right.\)

\(\Rightarrow VT>0\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Tú Nguyễn
Xem chi tiết
Anh Tú Dương
Xem chi tiết
Tú Nguyễn
Xem chi tiết
Nguyen
Xem chi tiết
Tú Nguyễn
Xem chi tiết
Tú Nguyễn
Xem chi tiết
Anh Tú Dương
Xem chi tiết
Võ Thị Kim Dung
Xem chi tiết
Kimian Hajan Ruventaren
Xem chi tiết