C17:
Dễ thấy tử số là tích các số chẵn, đặt các số \(2\) ra ngoài, có tất cả: \(\dfrac{4n-2-2}{4}+1=n\) số \(2\)
Xét \(A=\dfrac{2\cdot6\cdot10\cdot...\cdot\left(4n-2\right)}{\left(n+5\right)\left(n+6\right)...2n}=\dfrac{2^n\left(1\cdot3\cdot5\cdot...\cdot\left(2n-1\right)\right)}{\left(n+5\right)\left(n+6\right)...2n}\)
Nhân cả tử và mẫu với \(\left(n+4\right)!\) ta được:
\(A=\dfrac{2^n\cdot1\cdot3\cdot5\cdot...\cdot\left(2n-1\right)\left(n+4\right)!}{\left(n+4\right)!\cdot\left(n+5\right)\left(n+6\right)...2n}=\dfrac{2^n\cdot\left(n+4\right)!\cdot1\cdot3\cdot5\cdot...\cdot\left(2n-1\right)}{\left(2n\right)!}\)
\(=\dfrac{2^n\cdot\left(n+4\right)!\cdot1\cdot3\cdot5\cdot...\cdot\left(2n-1\right)}{1\cdot2\cdot3\cdot4\cdot...\cdot\left(2n-1\right)\cdot2n}=\dfrac{2^n\cdot\left(n+4\right)!}{2\cdot4\cdot6\cdot...\cdot2n}\)
\(=\dfrac{2^n\cdot\left(n+4\right)!}{2^n\cdot\left(1\cdot2\cdot3\cdot...\cdot n\right)}=\dfrac{\left(n+4\right)!}{n!}=\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)\)
Xét \(B=\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)+1\)
\(B=\left(n^2+5n+4\right)\left(n^2+5n+6\right)+1\)
Đặt \(a=n^2+5n+4\) thì \(B=a\left(a+2\right)+1=\left(a+1\right)^2\) với \(a\in Z^+\)
Khi đó \(C=\sqrt{1+\dfrac{2\cdot6\cdot10\cdot...\left(4n-2\right)}{\left(n+5\right)\left(n+6\right)...2n}}=\sqrt{\left(a+1\right)^2}=a+1\in Z^+\) ( đpcm )