Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Kimian Hajan Ruventaren
Xem chi tiết
Hồng Phúc
28 tháng 3 2021 lúc 22:27

Áp dụng BĐT BSC:

\(\dfrac{a^2}{a+b}+\dfrac{b^2}{b+c}+\dfrac{c^2}{c+a}\ge\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}\)

\(=\dfrac{a+b+c}{2}\)

\(\ge\dfrac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}=\dfrac{1}{2}\)

Đẳng thức xảy ra khi \(a=b=c=\dfrac{1}{3}\)

tran ngoc ly
Xem chi tiết
Thảo Vi
Xem chi tiết
Akai Haruma
8 tháng 3 2021 lúc 21:46

Bài 1:

Áp dụng BĐT AM-GM ta có:

$\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\geq 3\sqrt[3]{\frac{1}{(a+1)(b+1)(c+1)}}$

$\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}\geq 3\sqrt[3]{\frac{abc}{(a+1)(b+1)(c+1)}}$

Cộng theo vế và thu gọn:

$\frac{a+1}{a+1}+\frac{b+1}{b+1}+\frac{c+1}{c+1}\geq \frac{3(1+\sqrt[3]{abc})}{\sqrt[3]{(a+1)(b+1)(c+1)}}$

$\Leftrightarrow 3\geq \frac{3(1+\sqrt[3]{abc})}{\sqrt[3]{(a+1)(b+1)(c+1)}}$

$\Rightarrow (a+1)(b+1)(c+1)\geq (1+\sqrt[3]{abc})^3$

Ta có đpcm.

Akai Haruma
8 tháng 3 2021 lúc 21:49

Bài 2:

$a^3+a^3+a^3+a^3+b^3+c^3\geq 6\sqrt[6]{a^{12}b^3c^3}=6a^2\sqrt{bc}$

$b^3+b^3+b^3+b^3+a^3+c^3\geq 6b^2\sqrt{ac}$

$c^3+c^3+c^3+c^3+a^3+b^3\geq 6c^2\sqrt{ab}$

Cộng theo vế và rút gọn thu được:

$a^3+b^3+c^3\geq a^2\sqrt{bc}+b^2\sqrt{ac}+c^2\sqrt{ab}$ 

Ta có đpcm.

Dấu "=" xảy ra khi $a=b=c$

Akai Haruma
8 tháng 3 2021 lúc 21:50

Bài 3:

Áp dụng BĐT Cauchy-Schwarz:

$\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\geq \frac{(a+b+c)^2}{b+c+c+a+a+b}=\frac{(a+b+c)^2}{2(a+b+c)}=\frac{a+b+c}{2}$

Ta có đpcm

Dấu "=" xảy ra khi $a=b=c$

:vvv
Xem chi tiết
Yeutoanhoc
23 tháng 6 2021 lúc 16:55

Áp dụng bđt cosi schwart ta có:

`VT>=(a+b+c)^2/(a+b+c+sqrt{ab}+sqrt{bc}+sqrt{ca})`

Dễ thấy `sqrt{ab}+sqrt{bc}+sqrt{ca}<a+b+c`

`=>VT>=(a+b+c)^2/(2(a+b+c))=(a+b+c)/2=3`

Dấu "=" `<=>a=b=c=1.`

tràn thị trúc oanh
Xem chi tiết
Rồng Đom Đóm
9 tháng 12 2018 lúc 9:41

a)Bunhia:

\(\left(1+2\right)\left(b^2+2a^2\right)\ge\left(1.b+\sqrt{2}.\sqrt{2}a\right)^2=\left(b+2a\right)^2\)

b)\(ab+bc+ca=abc\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\)

Áp dụng bđt câu a

=>VT\(\ge\)\(\dfrac{b+2a}{\sqrt{3}ab}+\dfrac{c+2b}{\sqrt{3}bc}+\dfrac{a+2c}{\sqrt{3}ca}\)

\(\Leftrightarrow VT\ge\dfrac{1}{a}+\dfrac{2}{b}+\dfrac{1}{b}+\dfrac{2}{c}+\dfrac{1}{c}+\dfrac{2}{a}=3=VP\)

Tự tìm dấu "="

Nguyễn Bạch Gia Chí
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 5 2021 lúc 21:25

Áp dụng BĐT: \(x^2+y^2+z^2\ge\dfrac{1}{3}\left(x+y+z\right)^2\) ta có:

\(a+b+b\ge\dfrac{1}{3}\left(\sqrt{a}+\sqrt{b}+\sqrt{b}\right)^2\Rightarrow\sqrt{\dfrac{a+2b}{3}}\ge\dfrac{\sqrt{a}+2\sqrt{b}}{3}\)

Tương tự: \(\sqrt{\dfrac{b+2c}{3}}\ge\dfrac{\sqrt{b}+2\sqrt{c}}{3}\) ; \(\sqrt{\dfrac{c+2a}{3}}\ge\dfrac{\sqrt{c}+2\sqrt{a}}{3}\)

Cộng vế với vế và rút gọn:

\(\sqrt{\dfrac{a+2b}{3}}+\sqrt{\dfrac{b+2c}{3}}+\sqrt{\dfrac{c+2a}{3}}\ge\sqrt{a}+\sqrt{b}+\sqrt{c}\) (đpcm)

Cấn Minh Khôi
Xem chi tiết
Nguyễn Việt Lâm
28 tháng 3 2023 lúc 16:52

a.

Bình phương 2 vế, BĐT cần chứng minh trở thành:

\(\sqrt{\left(a^2+1\right)\left(b^2+1\right)}+\sqrt{\left(b^2+1\right)\left(c^2+1\right)}+\sqrt{\left(c^2+1\right)\left(a^2+1\right)}\ge6\)

Ta có:

\(\sqrt{\left(a^2+1\right)\left(1+b^2\right)}\ge\sqrt{\left(a+b\right)^2}=a+b\)

Tương tự cộng lại:

\(\sqrt{\left(a^2+1\right)\left(b^2+1\right)}+\sqrt{\left(b^2+1\right)\left(c^2+1\right)}+\sqrt{\left(c^2+1\right)\left(a^2+1\right)}\ge2\left(a+b+c\right)=6\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=1\)

b.

\(\sum\dfrac{a+1}{a^2+2a+3}=\sum\dfrac{a+1}{a^2+1+2a+2}\le\sum\dfrac{a+1}{4a+2}\)

Nên ta chỉ cần chứng minh:

\(\sum\dfrac{a+1}{4a+2}\le1\Leftrightarrow\sum\dfrac{4a+4}{4a+2}\le4\)

\(\Leftrightarrow\sum\dfrac{1}{2a+1}\ge1\)

Đúng đo: \(\dfrac{1}{2a+1}+\dfrac{1}{2b+1}+\dfrac{1}{2c+1}\ge\dfrac{9}{2\left(a+b+c\right)+3}=1\)

Lê Thị Tuyết Nhung
Xem chi tiết
soyeon_Tiểubàng giải
14 tháng 6 2017 lúc 9:56

Áp dụng bđt AM-GM cho 2 số không âm ta có:\(ab\sqrt{c-1}+bc\sqrt{a-9}+ca\sqrt{b-4}\)

\(=ab\sqrt{1.\left(c-1\right)}+\dfrac{bc\sqrt{9\cdot\left(a-9\right)}}{3}+\dfrac{ca\sqrt{4.\left(b-4\right)}}{2}\)\(\le ab.\dfrac{1+\left(c-1\right)}{2}+bc.\dfrac{9+\left(a-9\right)}{6}+ca.\dfrac{4+\left(b-4\right)}{4}=abc\left(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{4}\right)=\dfrac{11abc}{12}\left(đpcm\right)\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}1=c-1\\9=a-9\\4=b-4\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}c=2\\a=18\\b=8\end{matrix}\right.\)

Quyết Tâm Chiến Thắng
Xem chi tiết
tth_new
7 tháng 9 2019 lúc 10:54

Làm bài này một hồi chắc bay não:v

Bài 1:

a) Áp dụng BĐT AM-GM:

\(VT\le\frac{a+b}{4}+\frac{b+c}{4}+\frac{c+a}{4}=\frac{a+b+c}{2}^{\left(đpcm\right)}\)

Đẳng thức xảy ra khi a = b = c.

b)Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có đpcm.

Bài 2:

a) Dấu = bài này không xảy ra ? Nếu đúng như vầy thì em xin một slot, ăn cơm xong đi ngủ rồi dậy làm:v

b) Theo BĐT Bunhicopxki:

\(VT^2\le3.\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]=6\Rightarrow VT\le\sqrt{6}\left(qed\right)\)

Đẳng thức xảy r akhi \(a=b=c=\frac{1}{3}\)

Bài 3: Theo BĐT Cauchy-Schwarz và bđt AM-GM, ta có:

\(VT\ge\frac{4}{2-\left(x^2+y^2\right)}\ge\frac{4}{2-2xy}=\frac{2}{1-xy}\)

tth_new
7 tháng 9 2019 lúc 10:56

Nói trước là bài 3 em không chắc, tự dưng thấy tại sao lại có đk \(\left|x\right|< 1;\left|y\right|< 1?!?\) Chẳng lẽ lời giải của em sai hay là đề thừa?

Quyết Tâm Chiến Thắng
7 tháng 9 2019 lúc 11:04

tth-new ơi Bài 1 câu a áp dụng BĐT AM-GM cho 2 số nào thế ạ