Biến đổi bđt thành dạng:
$a+b \geq 2\sqrt{ab} \\\Rightarrow a+b-2\sqrt{ab} \geq 0 \\\Rightarrow (\sqrt{a}-\sqrt{b})^2 \geq 0$.
Điều này hiển nhiên đúng do $A^2 \geq 0$.
Dấu '=' khi $a=b$.
Biến đổi bđt thành dạng:
$a+b \geq 2\sqrt{ab} \\\Rightarrow a+b-2\sqrt{ab} \geq 0 \\\Rightarrow (\sqrt{a}-\sqrt{b})^2 \geq 0$.
Điều này hiển nhiên đúng do $A^2 \geq 0$.
Dấu '=' khi $a=b$.
Cho hai số a, b không âm. Chứng minh :
\(\dfrac{a+b}{2}\ge\sqrt{ab}\)
(Bất đẳng thức Cô - si cho hai số không âm)
Dấu đẳng thức xảy ra khi nào ?
1. a) so sánh \(\sqrt{25-16}\) và \(\sqrt{25}-\sqrt{16}\) (2 cách)
b) CMR, với a > b > 0 thì \(\sqrt{a}-\sqrt{b}< \sqrt{a-b}\) (2 cách)
2. a) Cho a,b \(\ge\) 0. C/m: \(\dfrac{a+b}{2}\ge\sqrt{ab}\)
b) Cho x,y,z > 0 thì \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{xz}}\)
3. Tìm x biết
a) \(\sqrt{x-4}=a\left(a\in R\right)\)
b) \(\sqrt{x+4}=x+2\)
Với a ≥ 0 và b ≥ 0, chứng minh \(\sqrt{\dfrac{a+b}{2}}\ge\dfrac{\sqrt{a}+\sqrt{b}}{2}\)
Tính : a)\(\dfrac{3\sqrt{2}-2\sqrt{3}}{\sqrt{3}-\sqrt{2}}-\dfrac{3}{3-\sqrt{6}}\)
b)\(\left(2\sqrt{2}-\sqrt{3}\right)^2-2\sqrt{3}\left(\sqrt{3}-2\sqrt{2}\right)\)
c) \(\left(\dfrac{1}{3-\sqrt{5}}-\dfrac{1}{3+\sqrt{5}}\right):\dfrac{5-\sqrt{5}}{\sqrt{5}-1}\)
d)\(\left(3-\dfrac{a-2\sqrt{a}}{\sqrt{a}-2}\right)\left(3+\dfrac{\sqrt{ab}-3\sqrt{a}}{\sqrt{b}-3}\right)\)b \(\ne\) 9 với a\(\ge\)0 , b\(\ge\)0, a\(\ne\) 4
Mọi người ai biết giúp tớ với ạ !! Mai tớ phải nộp rồi !! Cảm ơn mọi người trước !
\(\sqrt{\dfrac{9+12a+4a^2}{b^2}}\)với a\(\ge\)-1,5 và b<0
\(\left(a-b\right).\sqrt{\dfrac{ab}{\left(a-b\right)^2}}\)với a<b<0
Cho a,b >/ 0.CMR \(\dfrac{a+b}{2}\)>/\(\sqrt{ab}\)
1. Tìm x để bt có nghĩa
A=\(\dfrac{\sqrt{2x+3}}{\sqrt{x-3}}\)
B=\(\sqrt{\dfrac{2x+3}{x-3}}\)
C=\(\sqrt{-\dfrac{5}{x+2}}\)
D=\(\sqrt{-x}+\dfrac{1}{x+3}\)
2. Rút gọn bt
A=\(\sqrt{\dfrac{a+\sqrt{a^2-1}}{2}}-\sqrt{\dfrac{a-\sqrt{a^2-1}}{2}};\left(a>1\right)\)
B=\(\sqrt{\dfrac{a+\sqrt{a^2-1}}{2}}-\sqrt{\dfrac{a-\sqrt{a^2-b}}{2}};\left(a\ge\sqrt{b};b\ge0\right)\)
C=\(\left(1+\dfrac{a+\sqrt{a}}{a+1}\right)\left(1-\dfrac{a-\sqrt{a}}{\sqrt{a}+1}\right);\left(a\ge0,a\ne1\right)\)
D=\(\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}};\left(x>0\right)\)
Với \(a\ge0;b\ge0\), chứng minh :
\(\sqrt{\dfrac{a+b}{2}}\ge\dfrac{\sqrt{a}+\sqrt{b}}{2}\)
Rút gọn các biểu thức sau:
a. \(ab^2.\sqrt{\dfrac{3}{a^2b^4}}\) với a < 0, \(b\ne0;\) b. \(\sqrt{\dfrac{27\left(a-3\right)^2}{48}}\) với a > 3;
c. \(\sqrt{\dfrac{9+12a+4a^2}{b^2}}\) với \(a\ge-1,5\) và b < 0;
d. \(\left(a-b\right).\sqrt{\dfrac{ab}{\left(a-b\right)^2}}\) với a < b <0.