\(\dfrac{a+b}{2}\ge\sqrt{ab}\)
\(\Leftrightarrow a+b\ge2\sqrt{ab}\)
\(\Leftrightarrow a-2\sqrt{ab}+b\ge0\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) ( luôn đúng)
P/S: BĐT Cô - si cho 2 số
\(\dfrac{a+b}{2}\ge\sqrt{ab}\)
\(\Leftrightarrow a+b\ge2\sqrt{ab}\)
\(\Leftrightarrow a-2\sqrt{ab}+b\ge0\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) ( luôn đúng)
P/S: BĐT Cô - si cho 2 số
1. a) so sánh \(\sqrt{25-16}\) và \(\sqrt{25}-\sqrt{16}\) (2 cách)
b) CMR, với a > b > 0 thì \(\sqrt{a}-\sqrt{b}< \sqrt{a-b}\) (2 cách)
2. a) Cho a,b \(\ge\) 0. C/m: \(\dfrac{a+b}{2}\ge\sqrt{ab}\)
b) Cho x,y,z > 0 thì \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{xz}}\)
3. Tìm x biết
a) \(\sqrt{x-4}=a\left(a\in R\right)\)
b) \(\sqrt{x+4}=x+2\)
Tính:
A = \(\sqrt{\dfrac{25}{3-2\sqrt{2}}}\)
B = \(\sqrt{\dfrac{a^4b^3}{a^2b-ab}}\left(a>1;b>0\right)\)
1. cho a,b không âm. cmr
\(\dfrac{a+b}{2}\ge\sqrt{ab}\)
chứng minh bất phương trình:
a) \(\dfrac{a^2+3}{\sqrt{a^2+2}}>2\)
b) \(\sqrt{a}+\sqrt{b}< hoặc=\dfrac{a}{\sqrt{b}}+\dfrac{b}{\sqrt{a}}\)
với a>0, b>0
\(\sqrt{\dfrac{9+12a+4a^2}{b^2}}\)với a\(\ge\)-1,5 và b<0
\(\left(a-b\right).\sqrt{\dfrac{ab}{\left(a-b\right)^2}}\)với a<b<0
a. ab2.\(\sqrt{\dfrac{3}{a^2b^4}}\)với a<0,b\(\ne\)0
b. \(\sqrt{\dfrac{27\left(a-3\right)^2}{48}}\)với a>3
Rút gọn các biểu thức sau:
a. \(ab^2.\sqrt{\dfrac{3}{a^2b^4}}\) với a < 0, \(b\ne0;\) b. \(\sqrt{\dfrac{27\left(a-3\right)^2}{48}}\) với a > 3;
c. \(\sqrt{\dfrac{9+12a+4a^2}{b^2}}\) với \(a\ge-1,5\) và b < 0;
d. \(\left(a-b\right).\sqrt{\dfrac{ab}{\left(a-b\right)^2}}\) với a < b <0.
Tính : a)\(\dfrac{3\sqrt{2}-2\sqrt{3}}{\sqrt{3}-\sqrt{2}}-\dfrac{3}{3-\sqrt{6}}\)
b)\(\left(2\sqrt{2}-\sqrt{3}\right)^2-2\sqrt{3}\left(\sqrt{3}-2\sqrt{2}\right)\)
c) \(\left(\dfrac{1}{3-\sqrt{5}}-\dfrac{1}{3+\sqrt{5}}\right):\dfrac{5-\sqrt{5}}{\sqrt{5}-1}\)
d)\(\left(3-\dfrac{a-2\sqrt{a}}{\sqrt{a}-2}\right)\left(3+\dfrac{\sqrt{ab}-3\sqrt{a}}{\sqrt{b}-3}\right)\)b \(\ne\) 9 với a\(\ge\)0 , b\(\ge\)0, a\(\ne\) 4
Mọi người ai biết giúp tớ với ạ !! Mai tớ phải nộp rồi !! Cảm ơn mọi người trước !
Với a ≥ 0 và b ≥ 0, chứng minh \(\sqrt{\dfrac{a+b}{2}}\ge\dfrac{\sqrt{a}+\sqrt{b}}{2}\)