Áp dụng bđt cosi schwart ta có:
`VT>=(a+b+c)^2/(a+b+c+sqrt{ab}+sqrt{bc}+sqrt{ca})`
Dễ thấy `sqrt{ab}+sqrt{bc}+sqrt{ca}<a+b+c`
`=>VT>=(a+b+c)^2/(2(a+b+c))=(a+b+c)/2=3`
Dấu "=" `<=>a=b=c=1.`
Áp dụng bđt cosi schwart ta có:
`VT>=(a+b+c)^2/(a+b+c+sqrt{ab}+sqrt{bc}+sqrt{ca})`
Dễ thấy `sqrt{ab}+sqrt{bc}+sqrt{ca}<a+b+c`
`=>VT>=(a+b+c)^2/(2(a+b+c))=(a+b+c)/2=3`
Dấu "=" `<=>a=b=c=1.`
Cho a,b,c Là 3 cạnh tam giác . Chứng minh rằng
\(\dfrac{1}{\sqrt{ab+bc}}+\dfrac{1}{\sqrt{bc+ca}}+\dfrac{1}{\sqrt{ca+ab}}\ge\dfrac{1}{\sqrt{a^2+bc}}+\dfrac{1}{\sqrt{b^2+ac}}+\dfrac{1}{\sqrt{c^2+ab}}\)
cho a,b,c>0 thỏa mãn a+b+c=1. CMR: \(P=\sqrt{\dfrac{ab}{c+ab}}+\sqrt{\dfrac{bc}{a+bc}}+\sqrt{\dfrac{ca}{b+ca}}\le\dfrac{3}{2}\)
Cho a,b,c>0 thỏa mãn : \(ab+bc+ca=0\)
C/m: \(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\ge3+\sqrt{\dfrac{\left(a+b\right)\left(a+c\right)}{a^2}}+\sqrt{\dfrac{\left(b+c\right)\left(b+a\right)}{b^2}}+\sqrt{\dfrac{\left(c+a\right)\left(c+b\right)}{c^2}}\)
cho a,b,c dương thỏa mãn \(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}=\sqrt{2011}\).
CMR: \(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\ge\dfrac{\sqrt{2011}}{2}\)
cm bất đẳng thức vs a,b,c dương
\(\dfrac{a^8}{b^4}+\dfrac{b^8}{c^4}+\dfrac{c^8}{a^4}\ge ab^3+bc^3+ca^3\)
\(\dfrac{a^4}{b^2}+\dfrac{b^4}{c^2}+\dfrac{2ca}{b}+4b^2c^2\ge8abc\)
\(\dfrac{a^4}{b^2c^2}+\dfrac{b^4}{a^2c^2}+\dfrac{c^4}{a^2b^2}\ge\dfrac{b}{\sqrt{ac}}+\dfrac{c}{\sqrt{ab}}+\dfrac{a}{bc}\)
Cho các số dương a, b, c thỏa mãn: \(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}=\sqrt{2011}\). CMR: \(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}++\dfrac{c^2}{a+b}\ge\dfrac{1}{2}\sqrt{\dfrac{2011}{2}}\)
Cho các số dương a, b, c thỏa mãn: \(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}=\sqrt{2011}\). CMR: \(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\ge\dfrac{1}{2}\sqrt{\dfrac{2011}{2}}\)
Bài 1:
a , Cho a , b là các số dương . C/m: \(\dfrac{1}{a^2}+\dfrac{1}{b^2}\ge\dfrac{2}{ab}\)
b, Cho a , b , c là các số dương thoả mãn a+b+c+ab+bc+ca=6abc
C/m: \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\ge3\)
Bài 2:a, Cho a, b ,c là các số thực không âm thỏa mãn a+b+c=1
C/m: \(\dfrac{ab}{c+1}+\dfrac{bc}{a+1}+\dfrac{ca}{b+1}\le\dfrac{1}{4}\)
b,C/m: \(\dfrac{a+b+c}{\sqrt{a\left(a+3b\right)}+\sqrt{b\left(b+2c\right)}+\sqrt{c\left(c+2a\right)}}\ge\dfrac{1}{2}\)
Bài 3: Cho a , b, c> 0 thỏa mãn abc=1. Tìm max của:
\(P=\dfrac{ab}{a^5+b^5+ab}+\dfrac{bc}{b^5+c^5+bc}+\dfrac{ca}{c^5+a^5+ca}\)
cho a,b,c >0 và a+b+c=3 .chứng minh \(\dfrac{1}{\sqrt{2a^2+1}}+\dfrac{1}{\sqrt{2b^2+1}}+\dfrac{1}{\sqrt{2c^2+1}}\ge\sqrt{3}\)