Những câu hỏi liên quan
:vvv
Xem chi tiết
Yeutoanhoc
23 tháng 6 2021 lúc 16:55

Áp dụng bđt cosi schwart ta có:

`VT>=(a+b+c)^2/(a+b+c+sqrt{ab}+sqrt{bc}+sqrt{ca})`

Dễ thấy `sqrt{ab}+sqrt{bc}+sqrt{ca}<a+b+c`

`=>VT>=(a+b+c)^2/(2(a+b+c))=(a+b+c)/2=3`

Dấu "=" `<=>a=b=c=1.`

Phạm Tiến Minh
Xem chi tiết
friknob
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 8 2021 lúc 21:49

Áp dụng  \(x^2+y^2+z^2\ge xy+yz+zx\) và \(x^2+y^2+z^2\ge\dfrac{1}{3}\left(x+y+z\right)^2\)

\(N\ge\dfrac{a^2b}{c}+\dfrac{b^2c}{a}+\dfrac{c^2a}{b}\ge\dfrac{1}{3}\left(a\sqrt{\dfrac{b}{c}}+b\sqrt{\dfrac{c}{a}}+c\sqrt{\dfrac{a}{b}}\right)^2=3\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=1\)

Nhã Doanh
Xem chi tiết
王俊凯
Xem chi tiết
Phương Ann
6 tháng 5 2018 lúc 22:07

\(T=\dfrac{a+b}{\sqrt{ab+c}}+\dfrac{b+c}{\sqrt{bc+a}}+\dfrac{c+a}{\sqrt{ca+b}}\)

\(\odot\) Ta có: \(\dfrac{a+b}{\sqrt{ab+c}}=\dfrac{a+b}{\sqrt{ab+c\left(a+b+c\right)}}=\dfrac{a+b}{\sqrt{\left(b+c\right)\left(a+c\right)}}\)

\(\odot\) Tương tự:

\(\dfrac{b+c}{\sqrt{bc+a}}=\dfrac{b+c}{\sqrt{\left(a+b\right)\left(a+c\right)}}\)

\(\dfrac{c+a}{\sqrt{ca+b}}=\dfrac{c+a}{\sqrt{\left(a+b\right)\left(b+c\right)}}\)

\(\odot\) Áp dụng bất đẳng thức AM - GM

\(\Rightarrow T=\dfrac{a+b}{\sqrt{\left(a+c\right)\left(b+c\right)}}+\dfrac{b+c}{\sqrt{\left(a+c\right)\left(b+a\right)}}+\dfrac{a+c}{\sqrt{\left(a+b\right)\left(b+c\right)}}\)

\(\ge3\sqrt[3]{\dfrac{a+b}{\sqrt{\left(a+c\right)\left(b+c\right)}}\times\dfrac{b+c}{\sqrt{\left(a+c\right)\left(b+a\right)}}\times\dfrac{a+c}{\sqrt{\left(a+b\right)\left(b+c\right)}}}\)

\(=3\)

\(\odot\) Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{3}\)

Linh Le Thuy
Xem chi tiết
Hung nguyen
11 tháng 10 2018 lúc 19:29

Đề sai rồi: a,b,c > 0 thì làm sao mà có: ab + bc + ca = 0 được.

Nguyễn Huy Thắng
12 tháng 10 2018 lúc 15:06

may cai nay tuong hoi truoc co nguoi dang roi ma

ta có:

\(\sqrt{\dfrac{\left(a+b\right).\left(a+c\right)}{a^2}}\le\dfrac{1}{2}.\left(\dfrac{a+b}{a}+\dfrac{a+c}{a}\right)=a+\dfrac{b}{2}+\dfrac{c}{2}\)

tương tự thì ta có:

\(VP\le3+2\left(a+b+c\right)\)

\(VP=\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}=3+\dfrac{2}{ab}+\dfrac{2}{ac}+\dfrac{2}{bc}\)

từ các điều trên ta thấy cần CM:

\(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\ge a+b+c\)

bạn tự CM nốt ạ

trieuthinay
Xem chi tiết
Akai Haruma
30 tháng 11 2018 lúc 20:53

Lời giải:

Áp dụng BĐT AM-GM (Cô-si)

\(1+a^3+b^3\geq 3\sqrt[3]{a^3b^3}=3ab\)

\(\Rightarrow \frac{\sqrt{1+a^3+b^3}}{ab}\geq \frac{\sqrt{3ab}}{ab}=\frac{c\sqrt{3ab}}{abc}=c\sqrt{3ab}=\sqrt{c}.\sqrt{3abc}=\sqrt{3c}\)

Hoàn toàn tương tự:

\(\frac{\sqrt{1+b^3+c^3}}{bc}\geq \sqrt{3a}\)

\(\frac{\sqrt{1+a^3+c^3}}{ac}\geq \sqrt{3b}\)

Cộng theo vế những BĐT vừa thu được ta có:

\(\frac{\sqrt{a^3+b^3+1}}{ab}+\frac{\sqrt{b^3+c^3+1}}{bc}+\frac{\sqrt{c^3+a^3+1}}{ac}\geq \sqrt{3}(\sqrt{a}+\sqrt{b}+\sqrt{c})\)

\(\geq \sqrt{3}.3\sqrt[3]{\sqrt{a}.\sqrt{b}.\sqrt{c}}=\sqrt{3}.3\sqrt[6]{abc}=3\sqrt{3}\) (áp dụng BĐT Cô-si)

Ta có đpcm

Dấu "=" xảy ra khi $a=b=c=1$

Nguyễn Đức Thịnh
Xem chi tiết
Lightning Farron
31 tháng 3 2017 lúc 20:29

Bài 2:

\(\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{c+a}}+\sqrt{\dfrac{c}{a+b}}>2\)

Trước hết ta chứng minh \(\sqrt{\dfrac{a}{b+c}}\ge\dfrac{2a}{a+b+c}\)

Áp dụng BĐT AM-GM ta có:

\(\sqrt{a\left(b+c\right)}\le\dfrac{a+b+c}{2}\)\(\Rightarrow1\ge\dfrac{2\sqrt{a\left(b+c\right)}}{a+b+c}\)

\(\Rightarrow\sqrt{\dfrac{a}{b+c}}\ge\dfrac{2a}{a+b+c}\). Ta lại có:

\(\sqrt{\dfrac{a}{b+c}}=\dfrac{\sqrt{a}}{\sqrt{b+c}}=\dfrac{a}{\sqrt{a\left(b+c\right)}}\ge\dfrac{2a}{a+b+c}\)

Thiết lập các BĐT tương tự:

\(\sqrt{\dfrac{b}{c+a}}\ge\dfrac{2b}{a+b+c};\sqrt{\dfrac{c}{a+b}}\ge\dfrac{2c}{a+b+c}\)

Cộng theo vế 3 BĐT trên ta có:

\(VT\ge\dfrac{2a}{a+b+c}+\dfrac{2b}{a+b+c}+\dfrac{2c}{a+b+c}=\dfrac{2\left(a+b+c\right)}{a+b+c}\ge2\)

Dấu "=" không xảy ra nên ta có ĐPCM

Lưu ý: lần sau đăng từng bài 1 thôi nhé !

soyeon_Tiểubàng giải
31 tháng 3 2017 lúc 20:54

1) Áp dụng liên tiếp bđt \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) với a;b là 2 số dương ta có:

\(\dfrac{1}{2a+b+c}=\dfrac{1}{\left(a+b\right)+\left(a+c\right)}\le\dfrac{\dfrac{1}{a+b}+\dfrac{1}{a+c}}{4}\)\(\le\dfrac{\dfrac{2}{a}+\dfrac{1}{b}+\dfrac{1}{c}}{16}\)

TT: \(\dfrac{1}{a+2b+c}\le\dfrac{\dfrac{2}{b}+\dfrac{1}{a}+\dfrac{1}{c}}{16}\)

\(\dfrac{1}{a+b+2c}\le\dfrac{\dfrac{2}{c}+\dfrac{1}{a}+\dfrac{1}{b}}{16}\)

Cộng vế với vế ta được:

\(\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\le\dfrac{1}{16}.\left(\dfrac{4}{a}+\dfrac{4}{b}+\dfrac{4}{c}\right)=1\left(đpcm\right)\)

Anh Tú Dương
24 tháng 9 2019 lúc 17:35

Ai lm dc bai 3 chua

{Masilive))
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 5 2023 lúc 10:47

\(\sum_{sym}\sqrt{\dfrac{a^4+b^4}{1+ab}}=\sum_{sym}\sqrt{\dfrac{2\left(a^4+b^4\right)}{2+2ab}}>=\sum_{cyc}\dfrac{a^2}{\sqrt{2+2ab}}+\sum_{cyc}\dfrac{b^2}{\sqrt{2+2ab}}\)

\(\sum_{cyc}\dfrac{a^2}{\sqrt{2+2ab}}>=\dfrac{2\left(a+b+c\right)^2}{\sum2\sqrt{2+2ab}}>=\dfrac{3}{2}\)

\(\sum_{cyc}\dfrac{b^2}{\sqrt{2+2ab}}>=\dfrac{3}{2}\)

Cộng các BĐT trên, ta được ĐPCM

HaNa
25 tháng 5 2023 lúc 10:53

Ta có:

\(\Sigma_{sym}\sqrt{\dfrac{a^4+b^4}{1+ab}}=\Sigma_{sym}\sqrt{\dfrac{2\left(a^4+b^4\right)}{2+2ab}}\ge\Sigma_{cyc}\dfrac{a^2}{\sqrt{2+2ab}}+\Sigma_{cyc}\dfrac{b^2}{\sqrt{2+2ab}}\)

Sử dụng BĐT Cauchy - Schwarz và AM - GM có:

\(\Sigma_{cyc}\dfrac{a^2}{\sqrt{2+2ab}}\ge\dfrac{2\left(a+b+c\right)^2}{\Sigma2\sqrt{2+2ab}}\ge\dfrac{2\left(a+b+c\right)^2}{ab+bc+ca+9}\ge\dfrac{3}{2}\)

Tương tự: \(\Sigma_{cyc}\dfrac{b^2}{\sqrt{2+2ab}}\ge\dfrac{3}{2}\)

Cộng 2 BĐT ta được:

\(\sqrt{\dfrac{a^4+b^4}{1+ab}}+\sqrt{\dfrac{b^4+c^4}{1+bc}}+\sqrt{\dfrac{c^4+a^4}{1+ca}}\ge3\)

Đẳng thức xảy ra khi và chỉ khi a = b = c = 1.

 
Nguyễn Kim Hoàng Anh
Xem chi tiết