Chương I - Căn bậc hai. Căn bậc ba

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
王俊凯

Cho \(a,b,c>0\) sao cho: \(a+b+c=1\). CMR: \(\dfrac{a+b}{\sqrt{ab+c}}+\dfrac{b+c}{\sqrt{bc+a}}+\dfrac{c+a}{\sqrt{ca+b}}\ge3\)

Phương Ann
6 tháng 5 2018 lúc 22:07

\(T=\dfrac{a+b}{\sqrt{ab+c}}+\dfrac{b+c}{\sqrt{bc+a}}+\dfrac{c+a}{\sqrt{ca+b}}\)

\(\odot\) Ta có: \(\dfrac{a+b}{\sqrt{ab+c}}=\dfrac{a+b}{\sqrt{ab+c\left(a+b+c\right)}}=\dfrac{a+b}{\sqrt{\left(b+c\right)\left(a+c\right)}}\)

\(\odot\) Tương tự:

\(\dfrac{b+c}{\sqrt{bc+a}}=\dfrac{b+c}{\sqrt{\left(a+b\right)\left(a+c\right)}}\)

\(\dfrac{c+a}{\sqrt{ca+b}}=\dfrac{c+a}{\sqrt{\left(a+b\right)\left(b+c\right)}}\)

\(\odot\) Áp dụng bất đẳng thức AM - GM

\(\Rightarrow T=\dfrac{a+b}{\sqrt{\left(a+c\right)\left(b+c\right)}}+\dfrac{b+c}{\sqrt{\left(a+c\right)\left(b+a\right)}}+\dfrac{a+c}{\sqrt{\left(a+b\right)\left(b+c\right)}}\)

\(\ge3\sqrt[3]{\dfrac{a+b}{\sqrt{\left(a+c\right)\left(b+c\right)}}\times\dfrac{b+c}{\sqrt{\left(a+c\right)\left(b+a\right)}}\times\dfrac{a+c}{\sqrt{\left(a+b\right)\left(b+c\right)}}}\)

\(=3\)

\(\odot\) Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{3}\)


Các câu hỏi tương tự
Hoàng Nam
Xem chi tiết
Nguyễn Đức Thịnh
Xem chi tiết
Trúc Giang
Xem chi tiết
Nguyễn Thiều Công Thành
Xem chi tiết
Nguyễn Thu Trà
Xem chi tiết
Xem chi tiết
Nguyễn Võ Văn Hùng
Xem chi tiết
Nguyễn Võ Văn Hùng
Xem chi tiết
Phan Cả Phát
Xem chi tiết