Cho a,b,c thỏa mãn \(\sqrt{a}+\sqrt{b}+\sqrt{c}=7\) ; \(a+b+c=23\) ; \(\sqrt{abc}=3\)
Tính giá trị biểu thức A=\(\dfrac{1}{\sqrt{ab}+\sqrt{c}-6}+\dfrac{1}{\sqrt{bc}+\sqrt{a}-6}+\dfrac{1}{\sqrt{ca}+\sqrt{b}-6}\)
* Tính giá trị của biểu thức:
a. A=\(2\sqrt{2}-3\sqrt{18}+4\sqrt{32}-\sqrt{50}\)
b. B=\(\sqrt{\left(1-\sqrt{5}\right)^2}+\sqrt{6+2\sqrt{5}}\)
c. C=\(\dfrac{1}{2-\sqrt{6}}+\dfrac{1}{2+\sqrt{6}}\)
Cho các số thực dương a, b, c thoả mãn: \(abc=1\). Tìm giá trị lớn nhất của biểu thức: \(P=\dfrac{1}{\sqrt{2a^3+b^3+6}}+\dfrac{1}{\sqrt{2b^3+c^3+6}}+\dfrac{1}{\sqrt{2c^3+a^3+6}}\)
bài 1 cho biểu thức P = \(\dfrac{a\sqrt{a}-1}{a-\sqrt{a}}-\dfrac{a\sqrt{a}+1}{a+\sqrt{a}}+\left(\sqrt{a}-\dfrac{1}{\sqrt{a}}\right)\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-1}+\dfrac{\sqrt{a}-1}{\sqrt{a}+1}\right)\)
a. rút gọn P
b. với giá trị nào của a thì P = 7
c. với giá trị nào của a thì P > 6
bài 2 cho biểu thức P=\(\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2+4\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\cdot\dfrac{a\sqrt{b}-b\sqrt{a}}{\sqrt{ab}}\)
a. tìm điều kiện để P có nghĩa
b. rút gọn P
c. tính giá trị của P khi a = \(2\sqrt{3}\) và b = \(\sqrt{3}\)
bài 3 cho biểu thức P = \(\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\)
a. rút gọn biểu thức
b. chứng minh rằng P>0 với mọi x khác 1
Bài 1: Cho biểu thức A = 1 - \(\dfrac{\sqrt{x}}{1+\sqrt{x}}\), B = \(\dfrac{\sqrt{x}-1}{\sqrt{x}-2}\)+ \(\dfrac{\sqrt{x}+2}{3-\sqrt{x}}\)- \(\dfrac{10-5\sqrt{x}}{x-5\sqrt{x}+6}\)
(với x ≥ 0, x ≠ 4, x ≠ 9)
a, Tính giá trị của A biết x = 6-2\(\sqrt{5}\)
b, Rút gọn P = A : B
c, Tìm giá trị nhỏ nhất của P
câu 1 : Thực hiện phép tính :
1. \(\sqrt{0,36.100}\) 2. \(\sqrt[3]{-0,008}\) 3.\(\sqrt{12}+6\sqrt{3}+\sqrt{27}\)
4. \(\dfrac{1-\sqrt{2}}{2\sqrt{3}-3\sqrt{2}}\)
câu 2 : Rút gọn biểu thức
1. \(\dfrac{a\sqrt{b}+b\sqrt{a}}{\sqrt{a}+\sqrt{b}}\) ( a,b > 0 )
2.(\(\left(\sqrt{ab}-\sqrt{\dfrac{a}{b}}+\dfrac{1}{a}\sqrt{4ab}+\dfrac{1}{b}\sqrt{\dfrac{b}{a}}\right):\)\(\left(1+\dfrac{2}{a}-\dfrac{1}{b}+\dfrac{1}{ab}\right)\)với a,b > 0
câu 3 : Tìm x
1. \(\sqrt{4x}+\sqrt{\dfrac{x}{4}}+\dfrac{1}{2}\sqrt{49x}=6\)
2. 3x + \(\sqrt{3x-7}\)=7
câu 4 : Cho biểu thức : A = \(\left[1:\left(1-\dfrac{\sqrt{a}}{1+\sqrt{a}}\right)\right].\left[\dfrac{1}{\sqrt{a}-1}-\dfrac{2\sqrt{a}}{\left(a+1\right)\left(\sqrt{a}-1\right)}\right]\)
1. Tìm điều kiện của a để A có nghĩa.
2. Rút gọn biểu thức A.
3. Với giá trị nguyên nào của a thì A có giá trị nguyên?
câu 5 : Chứng tỏ rằng : \(\sqrt[3]{70-\sqrt{4901}}+\sqrt[3]{70+\sqrt{4901}}=5\)
Cho biểu thức R=\(\dfrac{2\sqrt{a}+3\sqrt{b}}{\sqrt{ab}+2\sqrt{a}-3\sqrt{b}-6}-\dfrac{6-\sqrt{ab}}{\sqrt{ab}+2\sqrt{a}+3\sqrt{b}+6}\)
a) Rút gọn biểu thức R.
b)Tìm a ∈ Z để R có giá trị nguyên
c)Chứng minh rằng :R=\(\dfrac{b+81}{b-81}\) thì \(\dfrac{b}{a}\) là một số nguyên chia hết cho 3
1) Tính giá trị biểu thức
a) A= \(\dfrac{2}{\sqrt{3}+1}\) + \(\dfrac{1}{\sqrt{3}-2}\) +\(\dfrac{6}{\sqrt{3}+3}\)
b) B= \(\dfrac{-7}{\sqrt{6}+\sqrt{5}}\) + \(\dfrac{\sqrt{2}}{\sqrt{6}}\) - \(\dfrac{7}{2+\sqrt{5}}\)
c) C= \(\dfrac{5+\sqrt{5}}{5-\sqrt{5}}\) + \(\dfrac{5-\sqrt{5}}{5+\sqrt{5}}\)
d) D= \(\left(\dfrac{2}{\sqrt{5}-\sqrt{3}}-\dfrac{2}{\sqrt{5}+\sqrt{3}}-4\right):\dfrac{2+\sqrt{3}}{\sqrt{3}-2}\)
2) Tính giá trị biểu thức
a) A= \(\sqrt{5+2\sqrt{6}}-\sqrt{5-2\sqrt{6}}\)
b) B= \(\sqrt{17-12\sqrt{2}}-\sqrt{9+4\sqrt{2}}\)
c) C= \(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}\)
d) D= \(\sqrt{12-3\sqrt{7}}-\sqrt{12+3\sqrt{7}}\)
Các bạn giúp mk với nhé! Mai mk phải nộp r
Cho hai biểu thức:
A = \(\dfrac{24}{\sqrt{x}+6}\) và B = \(\dfrac{\sqrt{x}}{\sqrt{x}+6}+\dfrac{1}{\sqrt{x}-6}+\dfrac{17\sqrt{x}+30}{x-36}\) với \(x\ge0;x\ne36\)
c) Biểu thức B sau khi thu gọn được B = \(\dfrac{\sqrt{x}+6}{\sqrt{x}-6}\). Tìm các giá trị của x để AB \(\le12\)