Chương I - Căn bậc hai. Căn bậc ba

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phan Cả Phát

Cho a,b,c > 0 có a+b+c = 3 Tìm gtln của

\(Q=\dfrac{ab}{\sqrt{3a^2+b^2}+1}+\dfrac{bc}{\sqrt{3b^2+c^2}+1}+\dfrac{ca}{\sqrt{3c^2+a^2}+1}\)

Akai Haruma
8 tháng 2 2018 lúc 10:55

Lời giải:

Áp dụng BĐT Bunhiacopxky:

\((3a^2+b^2)(3+1)\geq (3a+b)^2\Rightarrow \sqrt{3a^2+b^2}\ge \frac{3a+b}{2}\)

\(\Rightarrow \frac{ab}{\sqrt{3a^2+b^2}+1}\leq \frac{2ab}{3a+b+2}\)

Thực hiện tương tự với các phân thức còn lại và cộng theo vế:

\(\Rightarrow Q\leq \frac{2ab}{3a+b+2}+\frac{2bc}{3b+c+2}+\frac{2ac}{3c+a+2}\)

\(\Leftrightarrow 3Q\leq \frac{6ab}{3a+b+2}+\frac{6bc}{3b+c+2}+\frac{6ac}{3c+a+2}\)

\(\Leftrightarrow 3Q\le 2b-\frac{2b^2+4b}{3a+b+2}+2c-\frac{2c^2+4c}{3b+c+2}+2a-\frac{2a^2+4a}{3c+a+2}\)

\(\Leftrightarrow 3Q\leq 6-\left(\frac{2b^2+4b}{3a+b+2}+\frac{2c^2+4c}{3b+c+2}+\frac{2a^2+4a}{3c+a+2}\right)(1)\)

Áp dụng BĐT Cauchy-Schwarz:

\(\frac{2b^2}{3a+b+2}+\frac{2c^2}{3b+c+2}+\frac{2a^2}{3c+a+2}\geq \frac{2(b+c+a)^2}{3a+b+2+3b+c+2+3c+a+2}=\frac{2(a+b+c)^2}{4(a+b+c)+6}=1(2)\)

Và:

\(\frac{4b}{3a+b+2}+\frac{4c}{3b+c+2}+\frac{4a}{3c+a+2}=4\left(\frac{b^2}{3ab+b^2+2b}+\frac{c^2}{3bc+c^2+2c}+\frac{a^2}{3ac+a^2+2a}\right)\)

\(\geq \frac{4(b+c+a)^2}{3ab+b^2+2b+3bc+c^2+3ac+a^2+2a}=\frac{4(a+b+c)^2}{(a+b+c)^2+2(a+b+c)+(ab+bc+ac)}\)

\(\geq \frac{4(a+b+c)^2}{(a+b+c)^2+2(a+b+c)+\frac{(a+b+c)^2}{3}}=2(3)\) (AM-GM)

Từ \((1); (2); (3)\Rightarrow 3Q\leq 6-(2+1)\Leftrightarrow 3Q\leq 3\Leftrightarrow Q\leq 1\)

Vậy Q(max) là $1$

Dấu bằng xảy ra khi \(a=b=c=1\)

 

Phan Cả Phát
7 tháng 2 2018 lúc 22:16

Akai Haruma cô ơi làm giùm em với


Các câu hỏi tương tự
Nguyễn Thu Trà
Xem chi tiết
Lữ Diễm My
Xem chi tiết
Trúc Giang
Xem chi tiết
Nguyễn Thiều Công Thành
Xem chi tiết
Sĩ Bí Ăn Võ
Xem chi tiết
Nguyễn Đức Thịnh
Xem chi tiết
Vũ Đình Thái
Xem chi tiết
Đặng Hà Minh Huyền
Xem chi tiết
Sau Bui Xuan
Xem chi tiết