Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Ngọc Anh
Xem chi tiết
ILoveMath
27 tháng 2 2022 lúc 20:28

\(\dfrac{3}{1.4}+\dfrac{3}{4.7}+...+\dfrac{3}{40.43}\\ =1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{40}-\dfrac{1}{43}\\ =1-\dfrac{1}{43}\\ =\dfrac{42}{43}\)

Thu Hằng
27 tháng 2 2022 lúc 20:32

e) 3/1.4 + 3/4.7 + 3/7.10+ ... + 3/40.43
= 1-1/4 + 1/4 -1/7 + 1/7-1/10+...+1/40-1/43
= 1-1/43
= 42/43

 

Vũ Ngọc Diệp
Xem chi tiết
Thuỳ Linh Nguyễn
6 tháng 3 2023 lúc 21:41

\(B=1-\dfrac{3}{1\cdot4}-\dfrac{3}{4\cdot7}-...-\dfrac{3}{2020\cdot2023}\\ =1-\left(\dfrac{3}{1\cdot4}+\dfrac{3}{4\cdot7}+...+\dfrac{3}{2020\cdot2023}\right)\\ =1-\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{2020}-\dfrac{1}{2023}\right)\\ =1-\left(1-\dfrac{1}{2023}\right)\\ =1-\dfrac{2022}{2023}=\dfrac{1}{2023}\)

Yeutoanhoc
6 tháng 3 2023 lúc 21:41

`B=1-3/(1.4)-3/(4.7)-3/(7.10)-....-3/(2020.2023)`

`B=1-(3/(1.4)+3/(4.7)+.....+3/(2020.2023))`

`B=1-(1-1/4+1/4-1/7+.....+1/2020-1/2023)`

`B=1-(1-1/2023)`

`B=1-1+1/2023=1/2023`

Võ Thị Tuyết Kha
Xem chi tiết
Như
13 tháng 6 2018 lúc 14:50

A = \(-\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{2017}-\dfrac{1}{2020}\right)=-1+\dfrac{1}{2020}=\dfrac{-2019}{2020}\)

Hạnh Hồng
Xem chi tiết
👁💧👄💧👁
1 tháng 5 2021 lúc 16:14

\(S=\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{40.43}+\dfrac{3}{43.46}\\ S=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{40}-\dfrac{1}{43}+\dfrac{1}{43}-\dfrac{1}{46}\\ S=1-\dfrac{1}{46}< 1\)

Vậy S < 1 (đpcm)

Lê Phương Linh
Xem chi tiết
Tăng Ngọc Đạt
28 tháng 8 2023 lúc 19:56

\(\dfrac{3}{1\times4}x+\dfrac{3}{4\times7}x+\dfrac{3}{7\times10}x+...+\dfrac{3}{31\times34}x=33\)

\(x\left(\dfrac{3}{1\times4}+\dfrac{3}{4\times7}+\dfrac{3}{7\times10}+...+\dfrac{3}{31\times34}\right)=33\)

\(x\left(\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{31}-\dfrac{1}{34}\right)=33\)

\(x\left(1-\dfrac{1}{34}\right)=33\)

\(\dfrac{33}{34}x=33\)

\(x=34\)

Võ Ngọc Phương
28 tháng 8 2023 lúc 19:57

\(\dfrac{3}{1.4}x+\dfrac{3}{4.7}x+\dfrac{3}{7.10}x+...+\dfrac{3}{31.34}x=33\)

\(x.3\left(\dfrac{1}{1.4}+\dfrac{1}{4.7}+\dfrac{1}{7.10}+...+\dfrac{1}{31.34}\right)=33\)

\(x.3.\dfrac{1}{3}\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{31}-\dfrac{1}{34}\right)=33\)

\(x.\left(1-\dfrac{1}{34}\right)=33\)

\(x.\dfrac{33}{34}=33\)

\(x=33:\dfrac{33}{34}=33.\dfrac{34}{33}\)

\(x=34\)

 

Minh Ngọc
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 3 2022 lúc 21:10

a: \(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{121}-\dfrac{1}{124}=1-\dfrac{1}{124}=\dfrac{123}{124}\)

b: \(=3\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{100}-\dfrac{1}{101}\right)=3\cdot\dfrac{99}{202}=\dfrac{297}{202}\)

c: \(=\dfrac{1}{4}\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-...+\dfrac{1}{401}-\dfrac{1}{405}\right)=\dfrac{1}{4}\cdot\dfrac{404}{405}=\dfrac{101}{405}\)

d: \(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}=1-\dfrac{1}{101}=\dfrac{100}{101}\)

Kudo Shinichi AKIRA^_^
1 tháng 3 2022 lúc 21:10

đề bài là j

Võ Văn Minh
Xem chi tiết
Edogawa Conan
27 tháng 4 2017 lúc 21:23

\(A=3.\left(\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{97.100}\right)\)

\(A=3.\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{97}-\dfrac{1}{100}\right)\)

\(A=3.\left(1-\dfrac{1}{100}\right)\)

\(A=3.\dfrac{99}{100}=\dfrac{297}{100}\)

Lưu Thị Thảo Ly
27 tháng 4 2017 lúc 21:24

Hỏi đáp Toán

Hoàng Mai Trang
27 tháng 4 2017 lúc 21:34

\(A=\dfrac{3^2}{1\times4}+\dfrac{3^2}{4\times7}+\dfrac{3^2}{7\times10}+\dfrac{3^2}{10\times13}+\dfrac{3^2}{13\times16}...+\dfrac{3^2}{97\times100}\)

\(=3\times\left(\dfrac{3}{1\times4}+\dfrac{3}{4\times7}+\dfrac{3}{7\times10}+\dfrac{3}{10\times13}+\dfrac{3}{13\times16} +...+\dfrac{3}{97\times100}\right)\)

\(=3\times\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{16}+...+\dfrac{1}{97}-\dfrac{1}{100}\right)\)\(=3\times\left(1-\dfrac{1}{100}\right)\)

\(=3\times\dfrac{99}{100}\)

\(=\dfrac{297}{100}\)

\(=2\dfrac{97}{100}\)

Vậy \(A=2\dfrac{97}{100}\)

Lê Thị Bích
Xem chi tiết
Lightning Farron
12 tháng 4 2017 lúc 13:00

\(S=\dfrac{3}{1\cdot4}+\dfrac{3}{4\cdot7}+\dfrac{3}{7\cdot10}+...+\dfrac{3}{43\cdot46}\)

\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{43}-\dfrac{1}{46}\)

\(S=1-\dfrac{1}{46}< 1\)

Nguyễn Đỗ Anh Quân
25 tháng 4 2017 lúc 12:57

S= \(\dfrac{3}{1\cdot4}+\dfrac{3}{4\cdot7}+...+\dfrac{3}{40\cdot43}+\dfrac{3}{43\cdot46}\)

S= \(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{42}-\dfrac{1}{46}\)

S= \(1-\dfrac{1}{46}\)

S= \(\dfrac{45}{46}\)

\(\dfrac{45}{46}< 1\)

\(\Rightarrow S< 1\)

Vậy S < 1

Diệp Chi Lê
Xem chi tiết
Nguyễn Trần Diệu Linh
28 tháng 4 2018 lúc 9:38

1.

E = \(\dfrac{3}{1.4}\) + \(\dfrac{3}{4.7}\) + \(\dfrac{3}{7.10}\) + \(\dfrac{3}{10.13}\) + \(\dfrac{3}{13.16}\) + \(\dfrac{3}{16.19}\) + \(\dfrac{3}{19.22}\)

E = 1 - \(\dfrac{1}{4}\) + \(\dfrac{1}{4}\) - \(\dfrac{1}{7}\) + \(\dfrac{1}{7}\) - \(\dfrac{1}{10}\) + ... +\(\dfrac{1}{19}\) - \(\dfrac{1}{22}\)

E = 1 - \(\dfrac{1}{22}\)

E = \(\dfrac{21}{22}\)

2.

(x - 4)(x - 5) = 0

TH1:

x - 4 = 0 => x = 4

TH2:

x - 5 = 0 => x = 5

Vậy: x = 4 hoặc x = 5