A = \(-\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{2017}-\dfrac{1}{2020}\right)=-1+\dfrac{1}{2020}=\dfrac{-2019}{2020}\)
A = \(-\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{2017}-\dfrac{1}{2020}\right)=-1+\dfrac{1}{2020}=\dfrac{-2019}{2020}\)
Tính :
\(\dfrac{\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{13}}{\dfrac{2}{3}-\dfrac{2}{7}-\dfrac{2}{13}}\) . \(\dfrac{\dfrac{3}{4}-\dfrac{3}{16}-\dfrac{3}{64}-\dfrac{3}{258}}{1-\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{64}}\)
8) \(A=\dfrac{9}{10}-\dfrac{1}{90}-\dfrac{1}{72}-\dfrac{1}{56}-\dfrac{1}{42}-\dfrac{1}{30}-\dfrac{1}{20}-\dfrac{1}{12}-\dfrac{1}{6}-\dfrac{1}{2}\)
9) \(B=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{2014}}+\dfrac{1}{3^{2015}}\)
10) \(P=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2005}}{\dfrac{2004}{1}+\dfrac{2003}{2}+\dfrac{2002}{3}+...+\dfrac{1}{2004}}\)
Cho biểu thức \(C=\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}\)
Chứng minh \(C< \dfrac{3}{16}\)
A=\(\dfrac{\dfrac{3}{4}-\dfrac{3}{11}+\dfrac{3}{13}}{\dfrac{5}{7}-\dfrac{5}{11}+\dfrac{5}{13}}+\dfrac{\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{4}}{\dfrac{5}{4}-\dfrac{5}{6}+\dfrac{5}{8}}\)
Tính tổng đại số
\(A=\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{2}{3}+\dfrac{1}{4}+\dfrac{2}{4}+\dfrac{3}{4}-\dfrac{1}{5}-\dfrac{2}{5}-\dfrac{3}{5}-\dfrac{4}{5}+...+\dfrac{1}{10}+\dfrac{2}{10}+...+\dfrac{9}{10}\)
\(B=\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{2}{3}+\dfrac{1}{4}+\dfrac{2}{4}+\dfrac{3}{4}+...+\dfrac{1}{n}+\dfrac{2}{n}+...+\dfrac{n-1}{n}\)\(\left(n\in Z,n\ge2\right)\)
A=\(\dfrac{\dfrac{3}{4}-\dfrac{3}{11}+\dfrac{3}{13}}{\dfrac{5}{7}-\dfrac{5}{11}+\dfrac{5}{13}}\) +\(\dfrac{\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{4}}{\dfrac{5}{4}-\dfrac{5}{6}+\dfrac{5}{8}}\)
\(\dfrac{\dfrac{3}{7}-\dfrac{3}{11}+\dfrac{3}{13}}{\dfrac{5}{7}-\dfrac{5}{11}+\dfrac{5}{13}}\) + \(\dfrac{\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{4}}{\dfrac{5}{4}+\dfrac{5}{8}-\dfrac{5}{6}}\)
\(A=\dfrac{\dfrac{3}{11}+1-\dfrac{3}{7}}{3+\dfrac{9}{11}-\dfrac{9}{7}}-\dfrac{\dfrac{1}{3}+0,25-\dfrac{1}{5}+0.125}{\dfrac{7}{6}+\dfrac{7}{8}-0,7+\dfrac{7}{16}}\)
Tinh
\(\dfrac{\left(1+2+3+...+100\right)\left(\dfrac{1}{3}-\dfrac{1}{5}-\dfrac{1}{7}-\dfrac{1}{9}\right)\left(6,3.12-21.36\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}}\)
\(\dfrac{\left(\dfrac{3}{10}-\dfrac{4}{15}-\dfrac{7}{20}\right).\dfrac{5}{9}}{\left(\dfrac{1}{14}+\dfrac{1}{7}-\dfrac{-3}{35}\right)\dfrac{-4}{3}}\)