Giải hệ \(\left\{{}\begin{matrix}x-y-z=2\left(\sqrt{yz}+\sqrt{y}+\sqrt{z}-\sqrt{x}\right)\\3\sqrt{yz}=x-\sqrt{3z}+1\end{matrix}\right.\)
Tìm 3 bộ số x, y, z thỏa mãn: \(\left\{{}\begin{matrix}x+y+z\le9\\\sqrt{x-1}+\sqrt{y-2}+\sqrt{z-3}+5x+4y+3z=xy+yz+xz+11\end{matrix}\right.\)
Đặt \(\left(x-1;y-2;z-3\right)=\left(a;b;c\right)=abc>0\)
Điều kiện bài toán trở thành :
\(a+1+b+2+c+3< 9\)
\(\sqrt{a+\sqrt{b}+\sqrt{c}}+\sqrt{c+5\left(a+1\right)+4\left(b+2\right)+3+\left(c+3\right)}\)
\(=\left(a+1\right)\left(b+2\right)=\left(b+2\right)\left(c+3\right)=\left(c+3\right)+\left(a+1\right)+11+a+b+c< 3\)
\(a+b+c< 3\)
\(=\sqrt{a+\sqrt{b}+\sqrt{c}+ab+bc+ca}\)
Mặt khác, do aa không âm, ta luôn có:
\(\text{(√a−1)2(a+2√a)≥0(a−1)2(a+2a)≥0}\)
\(\text{⇒a2−3a+2√a≥0⇒a2−3a+2a≥0}\)
\(\text{⇒2√a≥a(3−a)≥a(b+c)⇒2a≥a(3−a)≥a(b+c) (1)}\)
Hoàn toàn tương tự ta có:\(\text{ 2√b≥b(c+a)2b≥b(c+a) (2)}\)
\(\text{2√c≥c(a+b)2c≥c(a+b) (3)}\)
Cộng vế với vế (1);(2);(3):
\(\text{2(√a+√b+√c)≥2(ab+bc+ca)2(a+b+c)≥2(ab+bc+ca)}\)
\(\text{⇔√a+√b+√c≥ab+bc+ca⇔a+b+c≥ab+bc+ca}\)
Dấu "=" xảy ra khi và chỉ khi \(\text{a=b=c=0a=b=c=0 hoặc a=b=c=1a=b=c=1}\)
⇒x=...;y=...;z=...
a) Cho x,y,z thỏa mãn x+y+z+xy+yz+zx=6. Tìm Min \(P=x^2+y^2+z^2\)
giải hệ pt : 1) \(\left\{{}\begin{matrix}\dfrac{1}{\sqrt{x}}+\sqrt{2-\dfrac{1}{y}}=2\\\dfrac{1}{\sqrt{y}}+\sqrt{2-\dfrac{1}{x}}=2\end{matrix}\right.\)
2) \(\left\{{}\begin{matrix}x^2+xy+y^2=7\\x^4+x^2y^2+y^4=21\end{matrix}\right.\)
1. Với mọi số thực x;y;z ta có:
\(x^2+y^2+z^2+\dfrac{1}{2}\left(x^2+1\right)+\dfrac{1}{2}\left(y^2+1\right)+\dfrac{1}{2}\left(z^2+1\right)\ge xy+yz+zx+x+y+z\)
\(\Leftrightarrow\dfrac{3}{2}P+\dfrac{3}{2}\ge6\)
\(\Rightarrow P\ge3\)
\(P_{min}=3\) khi \(x=y=z=1\)
1.1
ĐKXĐ: ...
Đặt \(\left\{{}\begin{matrix}\dfrac{1}{\sqrt{x}}=a>0\\\dfrac{1}{\sqrt{y}}=b>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+\sqrt{2-b^2}=2\\b+\sqrt{2-a^2}=2\end{matrix}\right.\)
\(\Rightarrow a-b+\sqrt{2-b^2}-\sqrt{2-a^2}=0\)
\(\Leftrightarrow a-b+\dfrac{\left(a-b\right)\left(a+b\right)}{\sqrt{2-b^2}+\sqrt{2-a^2}}=0\)
\(\Leftrightarrow a=b\Leftrightarrow x=y\)
Thay vào pt đầu:
\(a+\sqrt{2-a^2}=2\Rightarrow\sqrt{2-a^2}=2-a\) (\(a\le2\))
\(\Leftrightarrow2-a^2=4-4a+a^2\Leftrightarrow2a^2-4a+2=0\)
\(\Rightarrow a=1\Rightarrow x=y=1\)
2.
\(\left\{{}\begin{matrix}x^2+xy+y^2=7\\\left(x^2+y^2\right)^2-x^2y^2=21\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+xy+y^2=7\\\left(x^2+xy+y^2\right)\left(x^2-xy+y^2\right)=21\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+xy+y^2=7\\x^2-xy+y^2=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x^2+3xy+3y^2=21\\7x^2-7xy+7y^2=21\end{matrix}\right.\)
\(\Rightarrow4x^2-10xy+4y^2=0\)
\(\Leftrightarrow2\left(2x-y\right)\left(x-2y\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=2x\\y=\dfrac{1}{2}x\end{matrix}\right.\)
Thế vào pt đầu
...
Giải hệ phương trình :
\(\hept{\begin{cases}x-y-z=2\left(\sqrt{yz}+\sqrt{y}+\sqrt{z}-\sqrt{x}\right)\\3\sqrt{yz}=x-\sqrt{3z}+1\end{cases}}\)
Ta có PT (1) <=> ( x + \(2\sqrt{x}\)+ 1) - (y + z + \(2\sqrt{yz}\)) - \(2\left(\sqrt{y}+\sqrt{z}\right)\)- 1 = 0
<=> (\(1+\sqrt{x}\))2 - (\(1+\sqrt{y}+\sqrt{z}\))2 = 0
<=> \(\orbr{\begin{cases}2+\sqrt{x}+\sqrt{y}+\sqrt{z}=0\\\sqrt{x}-\sqrt{y}-\sqrt{z}=0\end{cases}}\)
Thế vào pt (2) được
y + z \(-\sqrt{3z}-\sqrt{yz}\)+ 1 = 0
<=> (\(\frac{\sqrt{z}}{2}-\sqrt{y}\))2 + (\(\frac{\sqrt{3z}}{2}-1\))2 = 0
<=> \(\hept{\begin{cases}z=\frac{4}{3}\\y=\frac{1}{3}\\x\:=3\end{cases}}\)
Ta có PT (1) <=> ( x + 2√x+ 1) - (y + z + 2√yz) - 2(√y+√z)- 1 = 0
<=> (1+√x)2 - (1+√y+√z)2 = 0
<=> [
2+√x+√y+√z=0 |
√x−√y−√z=0 |
Thế vào pt (2) được
y + z −√3z−√yz+ 1 = 0
<=> (√z2 −√y)2 + (√3z2 −1)2 = 0
<=> {
z=43 |
y=13 |
1)Giải hệ phương trình với \(x,y,z\in R\)
\(\left\{{}\begin{matrix}x+\sqrt{yz}=1\\y+\sqrt{zx}=1\\z+\sqrt{xy}=1\end{matrix}\right.\)
2)Cho đa thức \(P\left(x\right)=ax^2+bx+c\) thoả mãn \(\overline{abc}\) là số nguyên tố
a)Xác định \(P\left(x\right)\) biết \(P\left(0\right)=3,P\left(1\right)=4\)
b)Chứng minh \(P\left(x\right)\) vô nghiệm trên \(Z\)
3)Tìm tất cả các hàm \(f\):\(R\rightarrow R\) thoả mãn :
\(f\left(x^2\right)=f\left(x+y\right).f\left(x-y\right)+y^2,\forall x,y\in R\)
4)Cho đường tròn \(\left(I,r\right)\) nội tiếp \(\Delta ABC\).\(M\in\) đoạn \(BC\), \(\left(M\ne B,C\right)\).Gọi \(\left(I_1,r_1\right)\)là đường tròn nội tiếp \(\Delta AMC\).Đường thẳng song song \(BC\) tiếp xúc \(\left(I_1,r_1\right)\) cắt các cạnh \(AB,AC\) tại \(X,Y\).\(AM\) cắt \(XY\) tại \(N\).Gọi \(\left(I_2,r_2\right)\) là đường tròn nội tiếp \(\Delta AXN\).Chứng minh:
a)\(A,I,I_1,I_2\) cùng thuộc 1 đường tròn
b)\(r=r_1+r_2\)
Giải hệ phương trình: \(\left\{{}\begin{matrix}x-\sqrt{yz}=42\\y-\sqrt{zx}=6\\z-\sqrt{xy}=-30\end{matrix}\right.\)
1. Giải hpt : a) \(\left\{{}\begin{matrix}\sqrt{x}+\sqrt{y}+\sqrt{z}=\sqrt{2017}\\\sqrt[3]{\left(x+3\right)\left(y+3\right)\left(z+3\right)}=3+\sqrt[3]{xyz}\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\sqrt{x+1}+\sqrt[4]{x-1}+\sqrt{y^4+2}=y\\x^2+2x\left(y-1\right)+y^2-6y+1=0\end{matrix}\right.\)
a, Áp dụng bất đẳng thức Holder cho 2 bộ số \(\left(x,y,z\right)\left(3;3;3\right)\) ta có:
\(\left(x+3\right)\left(y+3\right)\left(z+3\right)\ge\left(\sqrt[3]{xyz}+\sqrt[3]{3.3.3}\right)^3=\left(\sqrt[3]{xyz}+3\right)\)
\(\sqrt[3]{\left(x+3\right)\left(y+3\right)\left(z+3\right)}\ge3+\sqrt[3]{xyz}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z\)
\(\Rightarrow\sqrt{x}+\sqrt{y}+\sqrt{z}=3\sqrt{x}=\sqrt{2017}\)
\(\Rightarrow x=\frac{\sqrt{2017}}{3}\)
\(\Rightarrow\left(x,y,z\right)=\left(\frac{\sqrt{2017}}{3},\frac{\sqrt{2017}}{3},\frac{\sqrt{2017}}{3}\right)\)
P/s: Không chắc cho lắm ạ.
Vũ Minh Tuấn, Hoàng Tử Hà, đề bài khó wá, Lê Gia Bảo, Aki Tsuki, Nguyễn Việt Lâm, Lê Thị Thục Hiền,
Học 24h, @tth_new, @Akai Haruma, Nguyễn Trúc Giang, Băng Băng 2k6
Help meeee, please!
thanks nhiều
Tìm GTNN của biểu thức:
\(A=\dfrac{x^2}{x+y}+\dfrac{y^2}{y+z}+\dfrac{z^2}{x+z}\)
Biết\(\left\{{}\begin{matrix}x.y.z>0\\\sqrt{xy}+\sqrt{yz}+\sqrt{zx}=1\end{matrix}\right.\)
\(A\ge\dfrac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\dfrac{1}{2}\left(x+y+z\right)\ge\dfrac{1}{2}\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)=\dfrac{1}{2}\)
\(A_{min}=\dfrac{1}{2}\) khi \(x=y=z=\dfrac{1}{3}\)
1) GHPT \(\left\{{}\begin{matrix}\sqrt{x+1}+\sqrt{2-y}=\sqrt{3}\\\sqrt{2-x}+\sqrt{y+1}=\sqrt{3}\end{matrix}\right.\)
2) GPT \(7x^2+7x=\sqrt{\dfrac{4x+9}{28}}\)
3) tìm số dương x,y,z thỏa \(x+y+z=\sqrt{xy}+\sqrt{yz}+\sqrt{zx}=2016\)
Đề bị lỗi không biết cái đề ghi gì trong đó nữa
câu 1:
từ giả thiết\(\Rightarrow\sqrt{x+1}+\sqrt{2-y}=\sqrt{y+1}+\sqrt{2-x}\)
\(\Leftrightarrow\left(\sqrt{x+1}-\sqrt{y+1}\right)+\left(\sqrt{2-y}-\sqrt{2-x}\right)=0\)
\(\Leftrightarrow\dfrac{x+1-y-1}{\sqrt{x+1}+\sqrt{y+1}}+\dfrac{2-y-2+x}{\sqrt{2-y}+\sqrt{2-x}}=0\)
\(\Leftrightarrow\left(x-y\right)\left(\dfrac{1}{\sqrt{x+1}+\sqrt{y+1}}+\dfrac{1}{\sqrt{2-y}+\sqrt{2-x}}\right)=0\)
hiển nhiên trong ngoặc lớn khác 0 nên x=y thay vào 1 trong 2 phương trình đầu tính (nhớ ĐKXĐ đấy )
câu 2:
chịu
câu 3:
đánh giá: ta luôn có \(x+y+z\ge\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\)
chứng minh: bất đẳng thức trên tương đương \(\dfrac{1}{2}\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]\ge0\)(luôn đúng )
dấu = xảy ra khi \(x=y=z=\dfrac{2016}{3}=672\)
Giải hệ phương trình: \(\left\{{}\begin{matrix}\sqrt{x}+\sqrt{y}+\sqrt{z}=\\2\sqrt{x}+5\sqrt{y}+10\sqrt{z}=\sqrt{xyz}\end{matrix}\right.\)