Chương I - Căn bậc hai. Căn bậc ba

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
michelle holder

1) GHPT \(\left\{{}\begin{matrix}\sqrt{x+1}+\sqrt{2-y}=\sqrt{3}\\\sqrt{2-x}+\sqrt{y+1}=\sqrt{3}\end{matrix}\right.\)

2) GPT \(7x^2+7x=\sqrt{\dfrac{4x+9}{28}}\)

3) tìm số dương x,y,z thỏa \(x+y+z=\sqrt{xy}+\sqrt{yz}+\sqrt{zx}=2016\)

Hung nguyen
14 tháng 4 2017 lúc 9:09

Đề bị lỗi không biết cái đề ghi gì trong đó nữa

Neet
14 tháng 4 2017 lúc 20:07

câu 1:

từ giả thiết\(\Rightarrow\sqrt{x+1}+\sqrt{2-y}=\sqrt{y+1}+\sqrt{2-x}\)

\(\Leftrightarrow\left(\sqrt{x+1}-\sqrt{y+1}\right)+\left(\sqrt{2-y}-\sqrt{2-x}\right)=0\)

\(\Leftrightarrow\dfrac{x+1-y-1}{\sqrt{x+1}+\sqrt{y+1}}+\dfrac{2-y-2+x}{\sqrt{2-y}+\sqrt{2-x}}=0\)

\(\Leftrightarrow\left(x-y\right)\left(\dfrac{1}{\sqrt{x+1}+\sqrt{y+1}}+\dfrac{1}{\sqrt{2-y}+\sqrt{2-x}}\right)=0\)

hiển nhiên trong ngoặc lớn khác 0 nên x=y thay vào 1 trong 2 phương trình đầu tính (nhớ ĐKXĐ đấy )

câu 2:

chịu

câu 3:

đánh giá: ta luôn có \(x+y+z\ge\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\)

chứng minh: bất đẳng thức trên tương đương \(\dfrac{1}{2}\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]\ge0\)(luôn đúng )

dấu = xảy ra khi \(x=y=z=\dfrac{2016}{3}=672\)


Các câu hỏi tương tự
Dương Thanh Ngân
Xem chi tiết
Alisa Chuppy
Xem chi tiết
nguyễn
Xem chi tiết
Hoàng Linh Chi
Xem chi tiết
phạm kim liên
Xem chi tiết
DRACULA
Xem chi tiết
Ánh Dương
Xem chi tiết
duy Nguyễn
Xem chi tiết
Lê Trường Lân
Xem chi tiết