Những câu hỏi liên quan
Manaka Mukaido
Xem chi tiết
Ngô Tấn Đạt
Xem chi tiết
Lê Vũ Anh Thư
Xem chi tiết
Khôi Bùi
23 tháng 10 2018 lúc 12:27

Giả sử điều cần c/m là đúng . Khi đó , ta có :

\(\dfrac{x^2+y^2+z^2}{\left(ax+by+cz\right)^2}=\dfrac{1}{a^2+b^2+c^2}\)

\(\Leftrightarrow\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)=\left(ax+by+cz\right)^2\)

\(\Leftrightarrow x^2a^2+y^2a^2+z^2a^2+x^2b^2+y^2b^2+z^2b^2+x^2c^2+y^2c^2+z^2c^2\)

\(=x^2a^2+b^2y^2+c^2z^2+2axby+2bycz+2axcz\)

\(\Leftrightarrow y^2a^2+z^2a^2+x^2b^2+z^2b^2+x^2c^2+y^2c^2=2axby+2bycz+2axcz\)

\(\Leftrightarrow y^2a^2+z^2a^2+x^2b^2+z^2b^2+x^2c^2+y^2c^2-2axby-2bycz-2axcz=0\) \(\Leftrightarrow\left(y^2a^2-2axby+b^2x^2\right)+\left(b^2z^2-2bycz+c^2y^2\right)+\left(x^2c^2-2axcz+a^2z^2\right)=0\)

\(\Leftrightarrow\left(ay-bx\right)^2+\left(bz-cy\right)^2+\left(cx-az\right)^2=0\left(1\right)\)

Do \(\left\{{}\begin{matrix}\left(ay-bx\right)^2\ge0\\\left(bz-cy\right)^2\ge0\\\left(cx-az\right)^2\ge0\end{matrix}\right.\)

\(\Rightarrow\left(ay-bx\right)^2+\left(bz-cy\right)^2+\left(cx-az\right)^2\ge0\left(2\right)\)

Từ ( 1 ) ; ( 2 ) \(\Rightarrow\left\{{}\begin{matrix}ay-bx=0\\bz-cy=0\\cx-az=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}ay=bx\\bz=cy\\cx=az\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{x}=\dfrac{b}{y}\\\dfrac{b}{y}=\dfrac{c}{z}\\\dfrac{c}{z}=\dfrac{a}{x}\end{matrix}\right.\) \(\Rightarrow\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}\)

Điều này đúng với GT đề bài cho

\(\Rightarrow\) Điều cần c/m là đúng

\(\Rightarrow\dfrac{x^2+y^2+z^2}{\left(ax+by+cz\right)^2}=\dfrac{1}{a^2+b^2+c^2}\left(đpcm\right)\)

Bình luận (2)
Nguyễn Quang Vinh
Xem chi tiết
Dương Huy Vũ
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 8 2022 lúc 11:27

Đặt x/a=y/b=z/c=k

=>x=ak; y=bk; z=ck

\(\dfrac{x^2+y^2+z^2}{\left(ax+by+cz\right)^2}=\dfrac{a^2k^2+b^2k^2+c^2k^2}{a^4k^2+b^4k^2+c^4k^2}=\dfrac{1}{a^2+b^2+c^2}\)

 

Bình luận (0)
Nguyễn Đức Duy
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 12 2022 lúc 14:09

Đặt x/a=y/b=z/c=k

=>x=ak; y=bk; z=ck

\(\dfrac{x^2+y^2+z^2}{\left(ax+by+cz\right)^2}=\dfrac{a^2k^2+b^2k^2+c^2k^2}{\left(a\cdot ak+b\cdot bk+c\cdot ck\right)^2}\)

\(=\dfrac{k^2\left(a^2+b^2+c^2\right)}{k^2\left(a^2+b^2+c^2\right)^2}=\dfrac{1}{a^2+b^2+c^2}\)

Bình luận (0)
Loveduda
Xem chi tiết
Hà An
28 tháng 7 2017 lúc 19:19

\(\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)=\left(ax+by+cz\right)^2\)

\(\Leftrightarrow a^2x^2+a^2y^2+a^2z^2+b^2x^2+b^2y^2+b^2z^2+c^2x^2+c^2y^2+c^2z^2\)

\(=a^2x^2+b^2y^2+c^2z^2+2axby+2bycz+2axcz\)

Trừ cả 2 vế cho \(a^2x^2+b^2y^2+c^2z^2\), ta có:

\(a^2y^2+a^2z^2+b^2x^2+b^2z^2+c^2x^2+c^2y^2=2axby+2bycz+2axcz\)

\(\Rightarrow a^2y^2+a^2z^2+b^2x^2+b^2z^2+c^2x^2+c^2y^2-2axby-2bycz-2axcz=0\)

\(\left(a^2y^2+b^2x^2-2axby\right)+\left(a^2z^2+c^2z^2-2axcz\right)+\left(b^2z^2+c^2y^2-2bycz\right)=0\)

\(\left(ay-bx\right)^2+\left(az-cx\right)^2+\left(bz-cy\right)^2=0\)

\(\left\{{}\begin{matrix}\left(ay-bx\right)^2\ge0\\\left(az-cx\right)^2\ge0\\\left(bz-cy\right)^2\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}ay-bx=0\\az-cx=0\\bz-cy=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}ay=bx\\az=cx\\bz=cy\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}\)

=> đpcm

Bình luận (0)
Vũ Phương Thảo
Xem chi tiết
Akai Haruma
12 tháng 11 2018 lúc 0:50

Lời giải:

\(\frac{(ax+by+cz)^2}{x^2+y^2+z^2}=a^2+b^2+c^2\)

\(\Rightarrow (ax+by+cz)^2=(a^2+b^2+c^2)(x^2+y^2+z^2)\)

\(\Leftrightarrow a^2x^2+b^2y^2+c^2z^2+2axby+2bycz+2axcz=a^2x^2+a^2y^2+a^2z^2+b^2x^2+b^2y^2+b^2z^2+c^2x^2+c^2y^2+c^2z^2\)

\(\Leftrightarrow 2axby+2bycz+2axcz=a^2y^2+a^2z^2+b^2x^2+b^2z^2+c^2x^2+c^2y^2\)

\(\Leftrightarrow (a^2y^2+b^2x^2-2axby)+(a^2z^2+c^2x^2-2axcz)+(b^2z^2+c^2y^2-2bycz)=0\)

\(\Leftrightarrow (ay-bx)^2+(az-cx)^2+(bz-cy)^2=0\)

Vì bản thân mỗi số hạng đều không âm nên để tổng của chúng bằng $0$ thì:

\((ay-bx)^2=(az-cx)^2=(bz-cy)^2=0\Rightarrow ay=bx; az=cx; bz=cy\)

\(\Rightarrow \frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)

Ta có đpcm.

Bình luận (0)
Liên Quân Mobile
Xem chi tiết
Adonis Baldric
4 tháng 8 2017 lúc 12:30

Đặt \(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}=k\) \(\left(k\ne0\right)\) \(\Rightarrow\left\{{}\begin{matrix}x=a.k\\y=b.k\\z=c.k\end{matrix}\right.\)

Ta có :

\(A=\dfrac{\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)}{\left(ax+by+cz\right)^2}\)

\(A=\dfrac{\left[\left(a.k\right)^2+\left(b.k\right)^2+\left(c.k\right)^2\right]\cdot\left(a^2+b^2+c^2\right)}{\left(a.a.k+b.b.k+c.c.k\right)^2}\)

\(A=\dfrac{\left(a^2k^2+b^2k^2+c^2k^2\right)\cdot\left(a^2+b^2+c^2\right)}{\left(a^2k+b^2k+c^2k\right)^2}\)

\(A=1\)

Bình luận (0)