Đặt \(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}=k\) \(\left(k\ne0\right)\) \(\Rightarrow\left\{{}\begin{matrix}x=a.k\\y=b.k\\z=c.k\end{matrix}\right.\)
Ta có :
\(A=\dfrac{\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)}{\left(ax+by+cz\right)^2}\)
\(A=\dfrac{\left[\left(a.k\right)^2+\left(b.k\right)^2+\left(c.k\right)^2\right]\cdot\left(a^2+b^2+c^2\right)}{\left(a.a.k+b.b.k+c.c.k\right)^2}\)
\(A=\dfrac{\left(a^2k^2+b^2k^2+c^2k^2\right)\cdot\left(a^2+b^2+c^2\right)}{\left(a^2k+b^2k+c^2k\right)^2}\)
\(A=1\)