Lập bảng xét dấu: 2x2+x-2<0.
Hỏi đáp
Lập bảng xét dấu: 2x2+x-2<0.
Hãy chia 18 vật có khối lượng lần lượt là 2016^2 ; 2015^2 ...1999^2 gam thành 3 nhóm có khối lượng bằng nhau(ko đc chia nhỏ các vật đó)
Giúp mk vs
Tìm tất cả các giá trị của tham số m để đường thẳng y =2x-3 cắt parabol y = x^2+ (m+2)x + m tại 2 điểm phân biệt nằm cùng phía với trục tung
Phương trình hoành độ giao điểm là:
\(x^2+\left(m+2\right)x+m-2x+3=0\)
\(\Leftrightarrow x^2+mx+m+3=0\)
Để (P) cắt (d) tại hai điểm nằm về hai phía với trục tung thì m+3<0
hay m<-3
Cho đường thẳng (d): x-y-1=0. Tất cả đường thẳng (d') đi qua M (2;1) và tạo với đường thẳng (d) một góc 45 độ
CMR: a^2 + b^2 + c^2 + d^2 + e^2 \(\ge\) a (b +c +d +e) với mọi a, b, c, d, e thuộc R?
Help!!!!!!!!!
a² + b² + c² + d² + e² ≥ a(b + c + d + e)
Ta có: a² + b² + c² + d² + e²
= (a²/4 + b²) + (a²/4 + c²) + (a²/4 + d²) + (a²/4 + e²)
Lại có: (a/2 - b)² ≥ 0 <=> a²/4 - ab + b² ≥ 0 <=> a²/4 + b² ≥ ab
Tương tự ta có:
. a²/4 + c² ≥ ac
. a²/4 + d² ≥ ad
. a²/4 + e² ≥ ae
--> (a²/4 + b²) + (a²/4 + c²) + (a²/4 + d²) + (a²/4 + e²) ≥ ab + ac + ad + ae
<=> a² + b² + c² + d² + e² ≥ a(b + c + d + e)
=> đpcm.
Dấu " = " xảy ra <=> a/2 = b = c = d = e.
Bài 1: Cho số thực dương ab + bc + ca =1. Tìm GTLN của
\(P=\dfrac{2a}{\sqrt{1+a^2}}+\dfrac{b}{\sqrt{1+b^2}}+\dfrac{c}{\sqrt{1+c^2}}\)
Bài 2: Cho x,y,z là số thực dương thỏa mãn x+y+z=xyz . CMR:
\(\dfrac{1+\sqrt{1+x^2}}{x}+\dfrac{1+\sqrt{1+y^2}}{y}+\dfrac{1+\sqrt{1+z^2}}{z}\le xyz\)
Bài 1:
Ta có: \(\dfrac{2a}{\sqrt{1+a^2}}=\dfrac{2a}{\sqrt{ab+bc+ca+a^2}}=\dfrac{2a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\)
\(\dfrac{b}{\sqrt{1+b^2}}=\dfrac{b}{\sqrt{ab+bc+ca+b^2}}=\dfrac{b}{\sqrt{\left(a+b\right)\left(b+c\right)}}\)
\(\dfrac{c}{\sqrt{1+c^2}}=\dfrac{c}{\sqrt{ab+bc+ca+c^2}}=\dfrac{c}{\sqrt{\left(a+c\right)\left(b+c\right)}}\)
Vậy \(P=\dfrac{2a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\dfrac{b}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\dfrac{c}{\sqrt{\left(a+c\right)\left(b+c\right)}}\)
Áp dụng BĐT AM-GM ta có:
\(P\le a\left(\dfrac{1}{a+b}+\dfrac{1}{a+c}\right)+b\left(\dfrac{1}{4\left(b+c\right)}+\dfrac{1}{a+c}\right)+c\left(\dfrac{1}{4\left(b+c\right)}+\dfrac{1}{a+c}\right)=\dfrac{9}{4}\)
Bài 2:
Ta có:
\(\dfrac{1+\sqrt{1+x^2}}{x}=\dfrac{2+\sqrt{4\left(1+x^2\right)}}{2x}\le\dfrac{2+\dfrac{4+\left(1+x^2\right)}{2}}{2x}=\dfrac{9+x^2}{4x}\)
Tương tự ta cũng có:
\(\dfrac{1+\sqrt{1+y^2}}{y}\le\dfrac{9+y^2}{4y};\dfrac{1+\sqrt{1+z^2}}{z}\le\dfrac{9+z^2}{4z}\)
Cộng theo vế 3 BĐT trên ta có:
\(\dfrac{1+\sqrt{1+x^2}}{x}+\dfrac{1+\sqrt{1+y^2}}{y}+\dfrac{1+\sqrt{1+z^2}}{z}\le\dfrac{9+x^2}{4x}+\dfrac{9+y^2}{4y}+\dfrac{9+z^2}{4z}\)
\(=\dfrac{9\left(xy+yz+xz\right)+xyz\left(x+y+z\right)}{4xyz}\le\dfrac{9\cdot\dfrac{\left(x+y+z\right)^2}{3}+\left(xyz\right)^2}{4xyz}=xyz\)
Đẳng thức xảy ra khi \(x=y=z=\sqrt{3}\)
Bài 1:
\(\dfrac{2a}{\sqrt{1+a^2}}=\dfrac{2a}{\sqrt{a^2+ab+bc+ca}}=\dfrac{2a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\)
Sau đó côsi
Tự làm nốt nhé, ra 3/2 đấy. Em học lớp 8 nên cách giải chỉ thế thôi. Câu 2 em chưa làm được
bài này dễ cho xin 1 slot giải bài giờ làm đề cương đã
câu 1 : A=(1+2+3=...+2005)(12+22+32+...10052)(65.111-13.15.370
câu 2 : tìm các số nguyên x,y biết rằng ;xy+x+y=4
câu 3:cho x,y là hai số nguyên khác dấu.Tính x-y biết |x|+|y|=8
câu 4 : cho D = 5-2x/x+1
a, tìm số nguyên x để D = 1/3
b,tìm số nguyên x để D là số ngyên tố
GIÚP MK VỚI.Ai làm hết mk tick cho.Ngày mai mk phải nộp rồi
Giúp mk nha mk đg cần gấp
Box toán 10 hình như phóng đại quá bạn ơi :v
Câu 2 bạn tự giải và biểu diễn nghiệm nhé, mình k biết vẽ biểu diễn :V
Bài 3 :
a) \(\left|2x+1\right|=5\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=5\left(2x+1\ge0\right)\\-\left(2x+1\right)=5\left(2x+1< 0\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=4\left(x\ge-\dfrac{1}{2}\right)\\-2x-1=5\left(x< -\dfrac{1}{2}\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\left(x\ge-\dfrac{1}{2}\right)\left(TMĐK\right)\\x=-3\left(x< -\dfrac{1}{2}\right)\left(TMĐK\right)\end{matrix}\right.\)
Vậy \(S=\left\{-3;2\right\}\)
b) \(\left|x\right|=2x+1\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2x+1\left(x\ge0\right)\\-x=2x+1\left(x< 0\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\left(x\ge0\right)\left(KTMĐK\right)\\x=-\dfrac{1}{3}\left(x< 0\right)\left(TMĐK\right)\end{matrix}\right.\)
Vậy \(S=\left\{-\dfrac{1}{3}\right\}\)
c) \(\left|2x-5\right|=x-1\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-5=x-1\left(2x-5\ge0\right)\\-\left(2x-5\right)=x-1\left(2x-5< 0\right)\end{matrix}\right.\)
Giải giống trên : \(\Leftrightarrow\left[{}\begin{matrix}x=4\left(x\ge\dfrac{5}{2}\right)\left(TMĐK\right)\\x=2\left(x< \dfrac{5}{2}\right)\left(TMĐK\right)\end{matrix}\right.\)
Vậy \(S=\left\{2;4\right\}\)
d) \(\left|x+4\right|=2x-5\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4=2x-5\left(x\ge-4\right)\\-\left(x+4\right)=2x-5\left(x< -4\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=9\left(TMĐK\right)\\x=\dfrac{1}{3}\left(KTMĐK\right)\end{matrix}\right.\)
Vậy \(S=\left\{9\right\}\)
Bài 4 : \(A=\left(\dfrac{x}{x^2-4}+\dfrac{2}{2-x}+\dfrac{1}{x+2}\right):\left(x-2+\dfrac{10-x^2}{x+2}\right)\)
\(A=\left(\dfrac{x}{\left(x+2\right)\left(x-2\right)}-\dfrac{2}{x-2}+\dfrac{1}{x+2}\right):\left(x-2+\dfrac{10-x^2}{x+2}\right)\)
\(A=\left(\dfrac{x-2x-4+x-2}{\left(x+2\right)\left(x-2\right)}\right):\left(x-2+\dfrac{10-x^2}{x+2}\right)\)
\(A=\dfrac{-6}{\left(x+2\right)\cdot\left(x-2\right)}:\left(\dfrac{x^2-4}{x+2}+\dfrac{10-x^2}{x+2}\right)\)
\(A=\dfrac{-6}{\left(x+2\right)\left(x-2\right)}:\dfrac{6}{x+2}\)
\(A=\dfrac{-6\cdot\left(x+2\right)}{6\left(x+2\right)\left(x-2\right)}=\dfrac{-1}{x-2}\)
b) \(\left|x\right|=\dfrac{1}{2}\Rightarrow x=\left[{}\begin{matrix}-\dfrac{1}{2}\\\dfrac{1}{2}\end{matrix}\right.\)\(\Rightarrow A=\left[{}\begin{matrix}\dfrac{-1}{x-2}=-\dfrac{1}{2}\\\dfrac{-1}{x-2}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=0\end{matrix}\right.\)
Vậy \(S=\left\{0;4\right\}\)
c) \(A< 0\Leftrightarrow\dfrac{-1}{x-2}< 0\Rightarrow x-2>-1\Rightarrow x>1\)
Mà mẫu của biểu thức A = x - 2 => Loại số 2 vào danh sách nghiệm.
Vậy để A < 0 thì x > 2.
Cho a\(\ge\)3; b\(\ge\)4; c\(\ge\)2. Tìm giá trị lớn nhất của bểu thức A=\(\dfrac{ab\sqrt{c-2}+bc\sqrt{a-3}+ca\sqrt{b-4}}{abc}\)
Cho a,b,c >0 và a+b+c=1. Chứng minh rằng: (1+\(\dfrac{1}{a}\))(1+\(\dfrac{1}{b}\))(1+\(\dfrac{1}{c}\))\(\ge\)64