Cho a,b,c>0 thỏa mãn :ab+bc+ca=abc Chứng minh rằng:
\(\sqrt{\dfrac{b^2+2a^2}{ab}}+\sqrt{\dfrac{c^2+2b^2}{bc}}+\sqrt{\dfrac{a^2+2c^2}{ac}}\ge\sqrt{3}\)
mọi ngừoi giúp em với ạ, em chưa học BĐT Minkowski nên giải cách của lớp 9 được không ạ?
Cho a, b, c > 0. Chứng minh rằng: \(\dfrac{\left(a+b+c\right)^2}{abc}+\dfrac{18\sqrt{3}}{\sqrt{a^2+b^2+c^2}}\ge\dfrac{81}{a+b+c}\)
Bất đẳng thức nào sau đây luôn đúng với giá trị của biến, giải thích
A. \(\left(a^2+b^2+c^2\right)^2\ge3\left(a^2+b^2+c^2\right)\)
B. \(a^2+b^2\ge3ab\)
C. \(x^3+y^3+1\ge3xy\)
D. \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{9}{x+y+z}\)
CMR với a,b,c là các số thực không âm ta luôn có a+b+c\(\ge\) \(\sqrt{ab}\)+\(\sqrt{bc}\)+\(\sqrt{ac}\)
Cho a, b, c > . Chứng minh rằng:
a, \(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\ge\dfrac{a+b+c}{2}\)
b, \(\dfrac{1}{a^2+bc}+\dfrac{1}{b^2+ac}+\dfrac{1}{c^2+ab}\le\dfrac{a+b+c}{2abc}\)
1. Giải bpt: \(\sqrt{x-2}-2\ge\sqrt{2x-5}-\sqrt{x+1}\)
2. Với \(x\in\left(0;1\right)\) tìm Min \(P=\dfrac{\sqrt{1-x}\left(1+\sqrt{1-x}\right)}{x}+\dfrac{5}{\sqrt{1-x}}\)
Bài 1: Cho số thực dương ab + bc + ca =1. Tìm GTLN của
\(P=\dfrac{2a}{\sqrt{1+a^2}}+\dfrac{b}{\sqrt{1+b^2}}+\dfrac{c}{\sqrt{1+c^2}}\)
Bài 2: Cho x,y,z là số thực dương thỏa mãn x+y+z=xyz . CMR:
\(\dfrac{1+\sqrt{1+x^2}}{x}+\dfrac{1+\sqrt{1+y^2}}{y}+\dfrac{1+\sqrt{1+z^2}}{z}\le xyz\)
Cho bất phương trình \(\sqrt{x-1}+\sqrt{5+x}+\sqrt{-x^2+6x-5}\ge m\) . Tìm giá trị lớn nhất của m để bất phương trình đúng với mọi x thuộc \([1;5]\) .
Cho bất phương trình \(\sqrt{x-1}+\sqrt{5-x}+\sqrt{-x^2+6x-5}\ge m\) . Tìm giá trị lớn nhất của m để bất phương trình đúng với mọi x thuộc \(\left[1;5\right]\) .