Ôn tập cuối năm môn Đại số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Ngô Chí Thành

Cho bất phương trình \(\sqrt{x-1}+\sqrt{5+x}+\sqrt{-x^2+6x-5}\ge m\) . Tìm giá trị lớn nhất của m để bất phương trình đúng với mọi x thuộc \([1;5]\) .

Nguyễn Việt Lâm
9 tháng 6 2020 lúc 17:59

Sửa đề: \(\sqrt{x-1}+\sqrt{5-x}+...\)

Đặt \(\sqrt{x-1}+\sqrt{5-x}=t\Rightarrow2\le t\le2\sqrt{2}\)

\(t^2=4+2\sqrt{-x^2+6x-5}\Rightarrow\sqrt{-x^2+6x-5}=\frac{1}{2}t^2-2\)

BPT trở thành: tìm m lớn nhất để

\(t+\frac{1}{2}t^2-2\ge m\) với mọi \(t\in\left[2;2\sqrt{2}\right]\)

Xét \(f\left(t\right)=\frac{1}{2}t^2+t-2\) trên \(\left[2;2\sqrt{2}\right]\)

\(-\frac{b}{2a}=-1\notin\left[2;2\sqrt{2}\right]\)

\(f\left(2\right)=-\frac{11}{8};f\left(2\sqrt{2}\right)=2+2\sqrt{2}\)

\(\Rightarrow\min\limits_{\left[2;2\sqrt{2}\right]}f\left(t\right)=f\left(2\right)=-\frac{11}{8}\)

\(\Rightarrow\) Để \(f\left(t\right)\ge m;\forall t\in\left[2;2\sqrt{2}\right]\Leftrightarrow m\le\min\limits_{\left[2;2\sqrt{2}\right]}f\left(t\right)=-\frac{11}{8}\)

\(\Rightarrow m_{max}=-\frac{11}{8}\)


Các câu hỏi tương tự
Ngô Chí Thành
Xem chi tiết
Egoo
Xem chi tiết
Egoo
Xem chi tiết
lu nguyễn
Xem chi tiết
Kinder
Xem chi tiết
Bích Lê
Xem chi tiết
Nguyễn Vũ Đăng Trọng
Xem chi tiết
Huỳnh Thị Thanh Trâm
Xem chi tiết
Kinder
Xem chi tiết