Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Huyền Trang
Xem chi tiết
Hung nguyen
18 tháng 10 2017 lúc 16:20

\(\dfrac{n}{12}+\dfrac{n^2}{8}+\dfrac{n^3}{24}\)

\(=\dfrac{n^3+3n^2+2n}{24}=\dfrac{n\left(n+1\right)\left(n+2\right)}{24}\)

Ta có: \(n\left(n+1\right)\left(n+2\right)\) là tích 3 số nguyên liên tiếp nên chia hết cho 3.

\(n=2k\) nên suy ra n và (n + 2) là 2 số chẵn liên tiếp nên sẽ có 1 số chia hết cho 2, 1 số chia hết cho 4.

\(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮8\)

Vì 3 và 8 nguyên tố cùng nhau nên: \(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮24\)

Vậy ta có ĐPCM

Hoàng Tuấn
Xem chi tiết
Akai Haruma
28 tháng 12 2018 lúc 15:37

Câu A:

Ta có:
\(A=\frac{n}{3}+\frac{n^2}{2}+\frac{n^3}{6}=\frac{2n}{6}+\frac{3n^2}{6}+\frac{n^3}{6}\)

\(=\frac{2n+3n^2+n^3}{6}\)

Xét tử : \(2n+3n^2+n^3=n(n^2+3n+2)=n(n^2+n+2n+2)\)

\(=n[n(n+1)+2(n+1)]=n(n+1)(n+2)\)

\(n(n+1)(n+2)\) là tích của 3 số nguyên liên tiếp nên \(n(n+1)(n+2)\vdots 3\)

Vì $n(n+1)$ là tích của 2 số nguyên liên tiếp nên \(n(n+1)\vdots 2\)

\(\Rightarrow n(n+1)(n+2)\vdots 2\)

\((2,3)=1\Rightarrow n(n+1)(n+2)\vdots (2.3=6)\)

Do đó: \(A=\frac{n(n+1)(n+2)}{6}\in\mathbb{Z}\)

Ta có đpcm.

Akai Haruma
28 tháng 12 2018 lúc 15:45

Câu B:

Ta có:

\(B=\frac{n^4}{24}+\frac{6n^3}{24}+\frac{11n^2}{24}+\frac{6n}{24}\)\(=\frac{n^4+6n^3+11n^2+6n}{24}\)

Xét mẫu:

\(n^4+6n^3+11n^2+6n=n(n^3+6n^2+11n+6)\)

\(=n[n^2(n+1)+5n(n+1)+6(n+1)]\)

\(=n(n+1)(n^2+5n+6)=n(n+1)[n^2+2n+3n+6]\)

\(=n(n+1)[n(n+2)+3(n+2)]\)

\(=n(n+1)(n+2)(n+3)\)

Vì $n(n+1)(n+2)$ là tích 3 số nguyên liên tiếp nên \(n(n+1)(n+2)\vdots 3\)

\(\Rightarrow n(n+1)(n+2)(n+3)\vdots 3\)

Vì $n,n+1,n+2,n+3$ là 4 số nguyên liên tiếp nên trong đó chắc chắn có một số chia $4$ dư $2$ , một số chia hết cho $4$

\(\Rightarrow n(n+1)(n+2)(n+3)\vdots (2.4=8)\)

Mà $(3,8)=1$ nên \(n(n+1)(n+2)(n+3)\vdots (8.3=24)\)

Do đó: \(B=\frac{n(n+1)(n+2)(n+3)}{24}\in\mathbb{Z}\) (đpcm)

Phạm Hồng Ánh
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 3 2020 lúc 15:28

Đề bài không đúng, A chỉ nhận giá trị nguyên khi a chẵn, còn a lẻ thì A là phân số không nguyên

Khách vãng lai đã xóa
0o0^^^Nhi^^^0o0
Xem chi tiết
Huy Thắng Nguyễn
10 tháng 1 2018 lúc 22:45

\(A=\dfrac{n^5}{120}+\dfrac{n^4}{12}+\dfrac{7n^3}{24}+\dfrac{5n^2}{12}+\dfrac{n}{5}\)

\(=\dfrac{n^5}{120}+\dfrac{10n^4}{120}+\dfrac{35n^3}{120}+\dfrac{50n^2}{120}+\dfrac{24n}{120}\)

\(=\dfrac{n^5+10n^4+35n^3+50n^2+24n}{120}\)

\(=\dfrac{n\left(n^4+10n^3+35n^2+50n+24\right)}{120}\)

\(=\dfrac{n\left(n^4+n^3+9n^3+9n^2+26n^2+26n+24n+24\right)}{120}\)

\(=\dfrac{n\left[n^3\left(n+1\right)+9n^2\left(n+1\right)+26n\left(n+1\right)+24\left(n+1\right)\right]}{120}\)

\(=\dfrac{n\left(n+1\right)\left(n^3+9n^2+26n+24\right)}{120}\)

\(=\dfrac{n\left(n+1\right)\left(n^3+2n^2+7n^2+14n+12n+24\right)}{120}\)

\(=\dfrac{n\left(n+1\right)\left[n^2\left(n+2\right)+7n\left(n+2\right)+12\left(n+2\right)\right]}{120}\)

\(=\dfrac{n\left(n+1\right)\left(n+2\right)\left(n^2+7n+12\right)}{120}\)

\(=\dfrac{n\left(n+1\right)\left(n+2\right)\left(n^2+3n+4n+12\right)}{120}\)

\(=\dfrac{n\left(n+1\right)\left(n+2\right)\left[n\left(n+3\right)+4\left(n+3\right)\right]}{120}\)

\(=\dfrac{n\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)}{120}\)

Để A có giá trị nguyên thì \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)⋮120\)

Thật vậy, vì A là tích của 5 số tự nhiên liên tiếp nên trong 5 số đó có 2 số chẵn liên tiếp (tích chia hết cho 8),1 số chia hết cho 3, 1 số chia hết cho 5

mà 8, 3, 5 đôi một nguyên tố cùng nhau nên \(A=x\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)⋮8.3.5=120\)

Vậy A có giá trị nguyên với mọi n \(\in\) N.

Khiêm Nguyễn Gia
Xem chi tiết
Lê Song Phương
11 tháng 1 lúc 5:45

\(n\) chẵn \(\Rightarrow n=2k\left(k\inℤ\right)\) 

Khi đó \(P=\dfrac{n}{12}+\dfrac{n^2}{8}+\dfrac{n^3}{24}\)

\(=\dfrac{k}{6}+\dfrac{k^2}{2}+\dfrac{k^3}{3}\)

\(=\dfrac{k+3k^2+2k^3}{6}\)

\(=\dfrac{k\left(2k^2+3k+1\right)}{6}\)

\(=\dfrac{k\left(2k+1\right)\left(k+1\right)}{6}\)

 Nhận thấy \(k,k+1\) là 2 số nguyên liên tiếp nên \(k\left(k+1\right)\left(2k+1\right)⋮2\)

 Nếu \(k\equiv0,2\left[3\right]\) thì dễ thấy \(k\left(2k+1\right)\left(k+1\right)⋮3\). Nếu \(k\equiv1\left[3\right]\) thì \(2k+1\equiv2.1+1=3\left[3\right]\) nên \(k\left(2k+1\right)\left(k+1\right)⋮3\)

 Do vậy, \(k\left(k+1\right)\left(2k+1\right)⋮6\). Suy ra đpcm.

Tiểu thư Emilya Angela
10 tháng 1 lúc 20:28
Phenis 21/04/2021

Giải thích các bước giải:

�=�12+�28+�324

=2�+3�2+�324

=�(�2+3�+2)24

=�24⋅(�2+3�+2)

=�24[�(�+1)+2(�+1)]

=�(�+1)(�+2)24

Vì �(�+1)(�+2) là tích ba số nguyên liên tiếp nên chia hết cho 3

Lại có  là số chẵn, nên đặt �=2�, ta có:

�(�+1)(�+2)=2�(2�+1)(2�+2)=4�(�+1)(2�+1)

Do �(�+1) là tích hai số nguyên liên tiếp nên chia hết cho 2 và 4�(�+1)(2�+1) chia hết cho 8

Vậy A chia hết cho 3 và 8, vậy A chia hết cho 24

⇒� là số nguyên 

   
Nguyễn Việt Lâm
12 tháng 1 lúc 11:32

Đặt \(A=\dfrac{n^3}{24}+\dfrac{n^2}{8}+\dfrac{n}{12}=\dfrac{n^3+3n^2+2n}{24}=\dfrac{n\left(n+1\right)\left(n+2\right)}{24}\)

Do \(n\left(n+1\right)\left(n+2\right)\) là tích 3 số nguyên liên tiếp nên luôn chia hết cho 3 (1)

Mặt khác n chẵn \(\Rightarrow n=n\left(n+2\right)=2k\left(2k+2\right)=4k\left(k+1\right)\) 

Do \(k\left(k+1\right)\) là tích 2 số nguyên liên tiếp nên luôn chia hết cho 2

\(\Rightarrow4k\left(k+1\right)\) chia hết cho 8 hay \(n\left(n+1\right)\left(n+2\right)\) chia hết cho 8 (2)

(1);(2) \(\Rightarrow n\left(n+1\right)\left(n+2\right)\) chia hết cho 24

Hay A là số nguyên với mọi n chẵn

Hoàng Ngọc Tuyết Nung
Xem chi tiết
svtkvtm
28 tháng 7 2019 lúc 19:53

\(\frac{a^5}{5}+\frac{a^3}{3}+\frac{7a}{15}\left(n\Rightarrow a\text{ }nha\right)=\frac{a^5}{5}+\frac{a^3}{3}+\frac{7a}{15}=\frac{a^5}{5}+\frac{a^3}{3}+\frac{15a-5a-3a}{15}=\frac{a^5-a}{5}+\frac{a^3-a}{3}+\frac{15a}{15}=\frac{a^5-a}{5}+\frac{a^3-a}{3}+a;a^k-a⋮k\left(a\in Z;1< k\in N\right)\left(fecmat\right)\Rightarrow\left\{{}\begin{matrix}a^5-a⋮5\\a^3-a⋮3\end{matrix}\right.\Rightarrow dpcm\)

svtkvtm
28 tháng 7 2019 lúc 20:07

\(\frac{a}{12}+\frac{a^2}{8}+\frac{a^3}{24}\left(n\Rightarrow a\text{ nha}\right)=\frac{a^3+3a^2+2a}{24}=\frac{\left(a+2\right)\left(a+1\right)a}{24}.a=2k\left(k\in N\right)\Rightarrow;\frac{a\left(a+1\right)\left(a+2\right)}{24}=\frac{2k.\left(2k+1\right)\left(2k+2\right)}{24}=\frac{k\left(k+1\right)\left(2k+1\right)}{6}\Leftrightarrow k\left(k+1\right)\left(2k+1\right)⋮6\)

Hien Nguyen
Xem chi tiết
htfziang
29 tháng 6 2021 lúc 15:02

a, Gọi d là UCLN (n+7; n+8) (d ∈ Z)

Ta có n+7 ⋮ d ; n+8 ⋮ d ➞ (n+7) - (n+8) ⋮ d ⇒ -1 ⋮ d

⇒ d ∈ Ư (-1) = (+-1)

⇒ \(\dfrac{\left(n+7\right)}{n+8}\) là phân số tối giản 

từ đo bạn tự làm được không? 

htfziang
29 tháng 6 2021 lúc 15:06

câu b nhân mẫu lên 4 thành 4n + 8, ta có \(\dfrac{\left(4n+7\right)}{4n+8}\) rồi bạn trừ tử cho mẫu sẽ được -1

dạng này bạn chỉ cần cố gắng nhân mẫu hoặc tử hoặc cả hai để khi trừ tử cho mẫu thì được kết quả là 1 hoặc -1 là đc

Giải:

\(\dfrac{n+7}{n+8}\) 

Gọi \(ƯCLN\left(n+7;n+8\right)=d\) 

\(\Rightarrow\left[{}\begin{matrix}n+7⋮d\\n+8⋮d\end{matrix}\right.\)   

\(\Rightarrow\left(n+8\right)-\left(n+7\right)⋮d\) 

\(\Rightarrow1⋮d\) 

\(\Rightarrow d=1\) 

Vậy \(\dfrac{n+7}{n+8}\) là p/s tối giản

 

\(\dfrac{4n+7}{n+2}\) 

Gọi \(ƯCLN\left(4n+7;n+2\right)=d\) 

\(\Rightarrow\left[{}\begin{matrix}4n+7⋮d\\n+2⋮d\end{matrix}\right.\)   \(\Rightarrow\left[{}\begin{matrix}4n+7⋮d\\4.\left(n+2\right)⋮d\end{matrix}\right.\)   \(\Rightarrow\left[{}\begin{matrix}4n+7⋮d\\4n+8⋮d\end{matrix}\right.\)

\(\Rightarrow\left(4n+8\right)-\left(4n+7\right)⋮d\)

\(\Rightarrow1⋮d\) 

\(\Rightarrow d=1\) 

Vậy \(\dfrac{4n+7}{n+2}\) là p/s tối giản

 

\(\dfrac{5n+12}{3n+7}\) 

Gọi \(ƯCLN\left(5n+12;3n+7\right)=d\) 

\(\Rightarrow\left[{}\begin{matrix}5n+12⋮d\\3n+7⋮d\end{matrix}\right.\)   \(\Rightarrow\left[{}\begin{matrix}3.\left(5n+12\right)⋮d\\5.\left(3n+7\right)⋮d\end{matrix}\right.\)   \(\Rightarrow\left[{}\begin{matrix}15n+36⋮d\\15n+35⋮d\end{matrix}\right.\) 

\(\Rightarrow\left(15n+36\right)-\left(15n+35\right)⋮d\) 

\(\Rightarrow1⋮d\) 

\(\Rightarrow d=1\) 

Vậy \(\dfrac{5n+12}{3n+7}\) là p/s tối giản

Chúc bạn học tốt!

Big City Boy
Xem chi tiết
Yeutoanhoc
24 tháng 2 2021 lúc 21:18

`A=n/3+n^2/2+n^3/6`

`=(n^3+3n^2+2n)/6`

`=(n(n^2+3n+2))/6`

`=(n(n+1)(n+2))/6`

Vì `n(n+1)(n+2)` là tích 3 số nguyên liên tiếp

`=>n(n+1)(n+2) vdots 6`

`=>(n(n+1)(n+2))/6 in Z(forall x in Z)`

Hoàng Khánh Khánh
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 5 2022 lúc 7:43

Bài 1: 

\(=\dfrac{3^{28}\cdot5^{10}\cdot2^{21}}{3^{24}\cdot2^{12}\cdot5^{12}\cdot3^3\cdot2^9}=\dfrac{3}{5^2}=\dfrac{3}{25}\)