Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hoàng Ngọc Tuyết Nung

a)cmr:

\(\dfrac{n^5}{5}=\dfrac{n^3}{3}=\dfrac{7n}{15}\) là số nguyên với mọi n \(\in Z\)

b)cmr:với n chẵn thì \(\dfrac{n}{12}+\dfrac{n^2}{8}+\dfrac{n^3}{24}\) là số nguyên

svtkvtm
28 tháng 7 2019 lúc 19:53

\(\frac{a^5}{5}+\frac{a^3}{3}+\frac{7a}{15}\left(n\Rightarrow a\text{ }nha\right)=\frac{a^5}{5}+\frac{a^3}{3}+\frac{7a}{15}=\frac{a^5}{5}+\frac{a^3}{3}+\frac{15a-5a-3a}{15}=\frac{a^5-a}{5}+\frac{a^3-a}{3}+\frac{15a}{15}=\frac{a^5-a}{5}+\frac{a^3-a}{3}+a;a^k-a⋮k\left(a\in Z;1< k\in N\right)\left(fecmat\right)\Rightarrow\left\{{}\begin{matrix}a^5-a⋮5\\a^3-a⋮3\end{matrix}\right.\Rightarrow dpcm\)

svtkvtm
28 tháng 7 2019 lúc 20:07

\(\frac{a}{12}+\frac{a^2}{8}+\frac{a^3}{24}\left(n\Rightarrow a\text{ nha}\right)=\frac{a^3+3a^2+2a}{24}=\frac{\left(a+2\right)\left(a+1\right)a}{24}.a=2k\left(k\in N\right)\Rightarrow;\frac{a\left(a+1\right)\left(a+2\right)}{24}=\frac{2k.\left(2k+1\right)\left(2k+2\right)}{24}=\frac{k\left(k+1\right)\left(2k+1\right)}{6}\Leftrightarrow k\left(k+1\right)\left(2k+1\right)⋮6\)


Các câu hỏi tương tự
Luyri Vũ
Xem chi tiết
Hoàng Ngọc Tuyết Nung
Xem chi tiết
Bùi Đức Anh
Xem chi tiết
Hoàng Ngọc Tuyết Nung
Xem chi tiết
Phạm Hồng Ánh
Xem chi tiết
Đinh Thuận
Xem chi tiết
Luyri Vũ
Xem chi tiết
Nguyễn Thị Hằng
Xem chi tiết
Hương Thanh
Xem chi tiết