với n số nguyên dương lớn hơn 1
a) cmr \(\dfrac{1}{1^2}+\dfrac{1}{2^2}+...+\dfrac{1}{n^2}< 2-\dfrac{1}{n}\)
b)cmr \(\dfrac{1}{1^2}+\dfrac{1}{2^2}+...+\dfrac{1}{n^2}< \dfrac{5}{3}\)
với số nguyên dương lớn hơn 1
a)cmr \(\dfrac{1}{1^2}+\dfrac{1}{2^2}+...+\dfrac{1}{n^2}< 2-\dfrac{1}{n}\)
b)cmr \(\dfrac{1}{1^2}+\dfrac{1}{2^2}+...+\dfrac{1}{n^2}< \dfrac{5}{3}\)
Cho n là số nguyên lớn hơn 1.Chứng minh bất đẳng thức \(\dfrac{1}{1^2}+\dfrac{1}{2^2}+\dfrac{1}{3^2}+......+\dfrac{1}{n^2}< 2-\dfrac{1}{n}\)
C/m với mọi n nguyên dương thì
\(\dfrac{1}{2\sqrt{2}}+\dfrac{1}{4\sqrt{3}}+.....+\dfrac{1}{2n\sqrt{n+1}}+\dfrac{1}{\sqrt{n+1}}>1\)
Chứng minh rằng: \(\dfrac{1}{2\sqrt{1}}+\dfrac{1}{3\sqrt{1}}+...+\dfrac{1}{\left(n+1\right)\sqrt{n}}< 2\) với mọi n là số tự nhiên khác 0
Chứng minh rằng với mọi số nguyên dương n ta đều có \(\dfrac{1}{2\sqrt{1}}+\dfrac{1}{3\sqrt{2}}+\dfrac{1}{4\sqrt{3}}+\dfrac{1}{5\sqrt{4}}+...+\dfrac{1}{\left(n+1\right)\sqrt{n}}< 2\)
CMR:\(\dfrac{1}{2!}+\dfrac{2}{3!}+\dfrac{3}{4!}+...+\dfrac{n-1}{n!}< 1\)
Trong đó n \(\in\)N, n\(\ge\)2
cho \(a_{1}=\dfrac{1}{2}, a_{n+1} = (\dfrac{2n-1}{2n+2}). a_{n}\) với mọi số nguyên a không vượt quá 2005. CMR \(a_{1} + a_{2}+......+a_{2006}<1 \)
CMR:
\(\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+\dfrac{1}{4\sqrt{3}+3\sqrt{3}}+....+\dfrac{1}{\left(n+1\right)\left(\sqrt{n}+n\sqrt{n+1}\right)}< 1\)