với n số nguyên dương lớn hơn 1
a) cmr \(\dfrac{1}{1^2}+\dfrac{1}{2^2}+...+\dfrac{1}{n^2}< 2-\dfrac{1}{n}\)
b)cmr \(\dfrac{1}{1^2}+\dfrac{1}{2^2}+...+\dfrac{1}{n^2}< \dfrac{5}{3}\)
CMR với mọi số tự nhiên lớn hơn 2 thì :
\(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2^n-1}>\dfrac{n}{2}\)
Cho các số dương a,b,c thỏa mãn ab + bc + ca = 3. CMR:
\(\dfrac{1}{a^2+1}+\dfrac{1}{b^2+1}+\dfrac{1}{c^2+1}\ge\dfrac{3}{2}\)
Cho a,b,c là các số dương thỏa mãn a+b+c=3.CMR
\(\dfrac{1}{2a^2+3}+\dfrac{1}{2b^2+3}+\dfrac{1}{2c^2+3}\ge\dfrac{3}{5}\)
Cho 3 số thực dương a,b,c thỏa mãn : ab+bc+ca = 3. CMR\(\dfrac{1+3a}{1+b^2}+\dfrac{1+3b}{1+c^2}+\dfrac{1+3c}{1+a^2}\ge6\)
CMR:\(\dfrac{1}{2!}+\dfrac{2}{3!}+\dfrac{3}{4!}+...+\dfrac{n-1}{n!}< 1\)
Trong đó n \(\in\)N, n\(\ge\)2
Cho các số dương a,b,c thỏa mãn: \(\dfrac{1}{a+2}+\dfrac{1}{b+2}+\dfrac{1}{c+2}=1\).Cmr: abc ≤ 1
cho a,b.c là các số thực dương thỏa mãn a+b+c=3
CMR \(\dfrac{a}{1+b^2}+\dfrac{b}{1+c^2}+\dfrac{c}{1+a^2}>\dfrac{2018}{2003}\)
Cho a,b, c là các số thực dương thỏa mãn a+b+c=3. CMR:
\(\dfrac{1}{a^2+b^2+2}+\dfrac{1}{b^2+c^2+2}+\dfrac{1}{c^2+a^2+2}\le\dfrac{3}{4}\)