Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngô Tấn Đạt
Xem chi tiết
Thơ Nụ =))
Xem chi tiết
Nguyễn Việt Lâm
25 tháng 1 lúc 21:33

Cộng vế với vế:

\(\Rightarrow x+y+z=2ax+2by+2cz\)

\(\Rightarrow x+y+z-2x=2ax+2by+2cx-2\left(by+cz\right)=2ax\)

\(\Rightarrow2ax=y+z-x\)

\(\Rightarrow a=\dfrac{y+z-x}{2x}\Rightarrow1+a=\dfrac{x+y+z}{2x}\)

Tương tự ta có: \(1+b=\dfrac{x+y+z}{2y}\) ; \(1+c=\dfrac{x+y+z}{2z}\)

\(\Rightarrow\dfrac{1}{1+a}+\dfrac{1}{1+b}+\dfrac{1}{1+c}=\dfrac{2x+2y+2z}{x+y+z}=2\)

 

Thầy Cao Đô
Xem chi tiết
Nguyễn Minh Quang
9 tháng 2 2022 lúc 10:37

ta có :

\(\frac{ax+by}{2}\ge\frac{a+b}{2}.\frac{x+y}{2}\Leftrightarrow2\left(ax+by\right)\ge\left(a+b\right)\left(x+y\right)\)

\(\Leftrightarrow2\left(ax+by\right)\ge ax+ay+bx+by\)

\(\Leftrightarrow ax-ay+by-bx\ge0\Leftrightarrow\left(a-b\right)\left(x-y\right)\ge0\)

Điều này đúng do giả thuyết \(a\ge b,x\ge y\)

Khách vãng lai đã xóa
Tran Khanh Chi
14 tháng 7 2022 lúc 11:09

ta có \(\dfrac{ax+by}{2}\) ≥ \(\dfrac{a+b}{2}\)\(\dfrac{x+y}{2}\)

<=> 2(ax + by) ≥ (a + b)(x + y)

<=> 2(ax + by) ≥ ax + ay + bx + by

<=> ax + by - ay - bx ≥ 0

<=> (a - b)(x - y) ≥ 0 (luôn đúng vì giả thiết a ≥ b và x ≥ y)

vậy nếu a ≥ b, x ≥ y thì \(\dfrac{ax+by}{2}\) ≥ \(\dfrac{a+b}{2}\)\(\dfrac{x+y}{2}\)

Nguyễn Hà Ngân
25 tháng 7 2022 lúc 21:42

Ta có \dfrac{ax + by}2 \ge \dfrac{a + b}2 . \dfrac{x + y}2

\Leftrightarrow 2(ax+by) \ge (a + b)(x + y)

\Leftrightarrow 2(ax+by) \ge ax + ay + bx + by

\Leftrightarrow ax + by - ay - bx \ge 0

\Leftrightarrow (a - b)(x - y) \ge 0 (luôn đúng vì giả thiết a \ge b và x \ge y).

Vậy nếu a \ge bx \ge y thì \dfrac{ax + by}2 \ge \dfrac{a + b}2 . \dfrac{x + y}2.

Pham Tien Dat
Xem chi tiết
Manaka Mukaido
Xem chi tiết
Thương Thương
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Bùi Đức Anh
Xem chi tiết
Trần Minh Hoàng
11 tháng 1 2021 lúc 22:40

Đặt \(ax^3=by^3=cz^3=k\).

Khi đó ta có:

\(VT=\sqrt[3]{ax^2+by^2+cz^2}=\sqrt[3]{\dfrac{k}{x}+\dfrac{k}{y}+\dfrac{k}{z}}=\sqrt[3]{k\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)}=\sqrt[3]{k}\).

\(VP=\sqrt[3]{\dfrac{k}{x^3}}+\sqrt[3]{\dfrac{k}{y^3}}+\sqrt[3]{\dfrac{k}{z^3}}=\sqrt[3]{k}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=\sqrt[3]{k}\).

Từ đó ta có đpcm.

Trương Huy Hoàng
11 tháng 1 2021 lúc 22:49

Ta có: ax3 = \(\dfrac{ax^2}{\dfrac{1}{x}}\)

Tương tự ta có: ax3 = by3 = cz3 

hay \(\dfrac{ax^2}{\dfrac{1}{x}}=\dfrac{by^2}{\dfrac{1}{y}}=\dfrac{cz^2}{\dfrac{1}{z}}=\dfrac{ax^2+by^2+cz^2}{\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}}\) = ax2 + by2 + cz2 (T/c dãy tỉ số bằng nhau)

\(\Rightarrow\) \(\sqrt[3]{ax^2+by^2+cz^2}=\sqrt[3]{ax^3}=\sqrt[3]{by^3}=\sqrt[3]{cz^3}\)

\(\dfrac{\sqrt[3]{a}}{\dfrac{1}{x}}=\dfrac{\sqrt[3]{b}}{\dfrac{1}{y}}=\dfrac{\sqrt[3]{c}}{\dfrac{1}{z}}=\dfrac{\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}}{\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}}=\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\)  (đpcm)

Chúc bn học tốt!