Cộng vế với vế:
\(\Rightarrow x+y+z=2ax+2by+2cz\)
\(\Rightarrow x+y+z-2x=2ax+2by+2cx-2\left(by+cz\right)=2ax\)
\(\Rightarrow2ax=y+z-x\)
\(\Rightarrow a=\dfrac{y+z-x}{2x}\Rightarrow1+a=\dfrac{x+y+z}{2x}\)
Tương tự ta có: \(1+b=\dfrac{x+y+z}{2y}\) ; \(1+c=\dfrac{x+y+z}{2z}\)
\(\Rightarrow\dfrac{1}{1+a}+\dfrac{1}{1+b}+\dfrac{1}{1+c}=\dfrac{2x+2y+2z}{x+y+z}=2\)