`x=by+cz,y=ax+cz,z=ax+by`. CMR: \(\dfrac{1}{1+a}+\dfrac{1}{1+b}+\dfrac{1}{1+c}=2\)
Cho x,y,z khác 2 và thỏa mãn: 2a=by+cz; 2b=ax+cz; 2c=ax+by
Tính \(A=\frac{1}{x+2}+\frac{1}{y+2}+\frac{1}{z+2}\)
cho 2a=by+cz ; 2b=ax+cz ;2c=ax+by và a+b+c khác 0
Tính M=1/(x+2) + 1/(y+2) + 1/(z+2) = ?
tính giá trị của biểu thức:
M=\(\frac{1}{x+2}\)+\(\frac{1}{y+2}\)+\(\frac{1}{z+2}\) biết rằng: 2a=by+cx; 2b=ax+cz; 2c= ax+by va a+b+c \(\ne\)0
Cho: \(\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}\)và x, y, z khác 0
CMR: \(\dfrac{x^2+y^2+z^2}{\left(ax+by+cz\right)^2}=\dfrac{1}{a^2+b^2+c^2}\)
Cho by+cz=2a
cz+ax=2b
ax+by=2c
Và \(a+b+c\ne0\)
Tính \(P=\frac{1}{x+2}+\frac{1}{y+2}+\frac{1}{z+2}\)
Cho x , y , z khác 0 , x + y + z khác 0 thỏa mãn x = by + cz , y = ax + cz , z = ax + by
Tính giá trị của biểu thức : A =\(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\)
tính M=1/(x+2)+1/(Y+2)+1/(z+2) biết 2*a=b*y+c*z; 2b=ax+cz ;2c=ax+by và a+b+c=0
a) cho \(\dfrac{xy}{x^2+y^2}=\dfrac{5}{8}\) . Tính \(A=\dfrac{x^2-2xy+y^2}{x^2+2xy+y^2}\)
b) cho \(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\) . Tính \(B=\dfrac{x^2+y^2+z^2}{\left(ã+by+cz\right)^2}\)