Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nhi Nguyen Phuong
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 10 2021 lúc 21:21

b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x-1}{2}=\dfrac{y+3}{4}=\dfrac{z-5}{6}=\dfrac{-3x-4y+5z+3-12-25}{-3\cdot2-4\cdot4+5\cdot6}=\dfrac{16}{8}=2\)

Do đó: x=5; y=5; z=17

Nguyễn Hoàng Minh
14 tháng 10 2021 lúc 22:01

\(a,\dfrac{x^3}{8}=\dfrac{y^3}{27}=\dfrac{z^3}{64}\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\Rightarrow\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{z^2}{16}\)

Áp dụng t/c dtsbn:

\(\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{z^2}{16}=\dfrac{x^2+2y^2-3z^2}{4+18-48}=\dfrac{-650}{-26}=25\\ \Rightarrow\left\{{}\begin{matrix}x^2=100\\y^2=225\\z^2=400\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\pm10\\y=\pm15\\z=\pm20\end{matrix}\right.\)

Vậy \(\left(x;y;z\right)\) có giá trị là hoán vị của \(\left(\pm10;\pm15;\pm20\right)\)

Isolde Moria
Xem chi tiết
Lightning Farron
18 tháng 8 2017 lúc 13:04

Cái bài này bình thường :v

Đặt \(A=\dfrac{x^3}{y^3+8}+\dfrac{y^3}{z^3+8}+\dfrac{z^3}{x^3+8}\)

\(BDT\Leftrightarrow\dfrac{x^3}{y^3+8}+\dfrac{y^3}{z^3+8}+\dfrac{z^3}{x^3+8}-\dfrac{2}{27}\left(xy+yz+xz\right)\ge\dfrac{1}{9}\)

Áp dụng BĐT AM-GM ta có:

\(\dfrac{x^3}{y^3+8}+\dfrac{y+2}{27}+\dfrac{y^2-2y+4}{27}\)

\(\ge3\sqrt[3]{\dfrac{x^3}{y^3+8}\cdot\dfrac{y+2}{27}\cdot\dfrac{y^2-2y+4}{27}}=\dfrac{x}{3}\)

Tương tự cho 2 BĐT còn lại cũng có:

\(\dfrac{y^3}{z^3+8}+\dfrac{z+2}{27}+\dfrac{z^2-2z+4}{27}\ge\dfrac{y}{3};\dfrac{z^3}{x^3+8}+\dfrac{x+2}{27}+\dfrac{x^2-2x+4}{27}\ge\dfrac{z}{3}\)

Cộng theo vế 3 BĐT trên ta có:

\(A+\dfrac{x+y+z+6}{27}+\dfrac{x^2+y^2+z^2-2\left(x+y+z\right)+12}{27}\ge\dfrac{x+y+z}{3}\)

\(\Leftrightarrow A+\dfrac{9}{27}+\dfrac{\dfrac{\left(x+y+z\right)^2}{3}+6}{27}\ge1\)\(\Leftrightarrow A\ge\dfrac{1}{3}\)

Cần chứng minh \(VT=A-\dfrac{2}{27}\left(xy+yz+xz\right)\ge\dfrac{1}{9}=VP\)

\(\Leftrightarrow VT=\dfrac{1}{3}-\dfrac{2\cdot\dfrac{\left(x+y+z\right)^2}{3}}{27}=\dfrac{1}{9}=VP\) (đúng)

Xảy ra khi \(x=y=z=1\)

P/s:Trình bày hơi khó hiểu, thông cảm :v

Isolde Moria
18 tháng 8 2017 lúc 10:08
Ngô Thanh Sang
18 tháng 8 2017 lúc 15:01

( Bài này làm hồi lớp 9 rồi )image /assets/images/2017/08_18/8665-m8xvaH0ScoLxZlfK.jpeg

Dấu " = " xảy ra khi và chỉ khi \(x=y=z=1\)

Ly Hoàng
Xem chi tiết
Nguyễn Thanh Hằng
19 tháng 10 2018 lúc 18:00

\(\dfrac{x^3}{8}=\dfrac{y^3}{64}=\dfrac{z^3}{216}\)

\(\Leftrightarrow\left(\dfrac{x}{2}\right)^3=\left(\dfrac{y}{4}\right)^3=\left(\dfrac{z}{6}\right)^3\)

\(\Leftrightarrow\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{6}\)

Đặt : \(\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{6}=k\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2k\\y=4k\\z=6k\end{matrix}\right.\)

\(2x^2+2y^2-z^2=1\)

\(\Leftrightarrow2.\left(2k\right)^2+2.\left(4k\right)^2-\left(6k\right)^2=1\)

\(\Leftrightarrow8k^2+32k^2-36k^2=1\)

\(\Leftrightarrow4k^2=1\)

\(\Leftrightarrow k^2=\dfrac{1}{4}\) \(\Leftrightarrow\left[{}\begin{matrix}k=\dfrac{1}{2}\\k=-\dfrac{1}{2}\end{matrix}\right.\)

+) \(k=\dfrac{1}{2}\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2.\dfrac{1}{2}=1\\y=4.\dfrac{1}{2}=2\\z=6.\dfrac{1}{2}=3\end{matrix}\right.\)

+) \(k=-\dfrac{1}{2}\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}.2=-1\\y=-\dfrac{1}{2}.4=-2\\z=-\dfrac{1}{2}.6=-3\end{matrix}\right.\)

Nguyễn Ngọc Gia Hân
Xem chi tiết
Myrie thieu nang :)
Xem chi tiết
ミ★ΉảI ĐăПG 7.12★彡
21 tháng 12 2020 lúc 10:29

a) Áp dụng tính chất dãy tỉ số bằng nhau ta được:

X/3 = y/4 = x/3 + y/4 = 28/7 = 4

=> x = 4 × 3 = 12

=> y = 4 × 4 = 16

Vậy x = 12, y = 16

B) Áp dụng tính chất dãy tỉ số bằng nhau ta được:

X/2 = y/(-5) = x/2 - y/(-5) = (-7)/7 = -1

=> x = -1 × 2 = -2

=> y = -1 × -5 = 5

Vậy x = -2, y = 5

C) làm tương tự như bài a, b

Linh Vũ khánh
9 tháng 12 2021 lúc 21:28

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

Charmaine
Xem chi tiết
Charmaine
31 tháng 7 2021 lúc 14:46

giúp mình với ạ mình cần gấp

OH-YEAH^^
31 tháng 7 2021 lúc 15:07

a) Ta có: \(\dfrac{x}{2}=\dfrac{y}{5}\)

\(\dfrac{y-x}{5-2}=\dfrac{6}{3}=2\)

\(\dfrac{x}{2}=2\Rightarrow x=4\)

\(\dfrac{y}{5}=2\Rightarrow y=10\)

\(\dfrac{z}{10}=2\Rightarrow z=20\)

OH-YEAH^^
31 tháng 7 2021 lúc 15:09

b) Ta có: \(\dfrac{x}{8}=\dfrac{2y}{6}=\dfrac{z}{7}\)

\(\dfrac{x-2y+z}{8-6+7}=\dfrac{18}{9}=2\)

\(\dfrac{x}{8}=2\Rightarrow x=16\)

\(\dfrac{y}{3}=2\Rightarrow y=6\)

\(\dfrac{z}{7}=2\Rightarrow z=14\)

Ichigo
Xem chi tiết
Nguyễn Quang Minh
13 tháng 10 2018 lúc 20:08

Và ???

Ann Đinh
13 tháng 10 2018 lúc 20:30

đề bài là j vậy bn ??

Nguyễn Lê Phước Thịnh
15 tháng 10 2022 lúc 23:46

\(\dfrac{x^3}{8}=\dfrac{y^3}{64}=\dfrac{z^3}{216}\)

=>x/2=y/4=z/6

=>x/1=y/2=z/3=k

=>x=k; y=2k; z=3k

Ta có: x^2+y^2+z^2=14

=>k^2+4k^2+9k^2=14

=>14k^2=14

=>k^2=1

TH1: k=1

=>x=1; y=2; z=3

TH2: k=-1

=>x=-1; y=-2; z=-3

crewmate
Xem chi tiết
ILoveMath
29 tháng 11 2021 lúc 20:58

Áp dụng t/c dtsbn ta có:

\(\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3}{z}=\dfrac{1}{x+y+z}=\dfrac{y+z+1+x+z+2+x+y-3}{x+y+z}=\dfrac{2\left(x+y+z\right)}{x+y+z}=2\)

\(\dfrac{1}{x+y+z}=2\Rightarrow2x+2y+2z=1\Rightarrow x+y+z=0,5\Rightarrow\left\{{}\begin{matrix}x+y=0,5-z\\y+z=0,5-x\\x+z=0,5-y\end{matrix}\right.\\ \dfrac{y+z+1}{x}=2\Rightarrow y+z+1=2x\Rightarrow0,5-x+1=2x\Rightarrow x=0,5\\ \dfrac{x+z+2}{y}=2\Rightarrow x+z+2=2y\Rightarrow0,5-y+2=2y\Rightarrow y=\dfrac{5}{6}\\ \dfrac{x+y-3}{z}=2\Rightarrow x+y-3=2z\Rightarrow0,5-z-3=2z\Rightarrow z=-\dfrac{5}{6}\)

Nguyễn Thu Trà
Xem chi tiết