Tìm x,y,z biết\(\dfrac{x^2}{8}=\dfrac{y^3}{27}=\dfrac{z^3}{64};x^2+2y^2+3z^2=-650\). Nhớ giải đầy đủ nha.
Tìm hai số x,y biết
a/\(\dfrac{x^3}{8}=\dfrac{y^3}{27}=\dfrac{z^3}{64};x^2+2y^2-3z^2=-650\)
b/\(\dfrac{x-1}{2}=\dfrac{y+3}{4}=\dfrac{z-5}{6};5z-3x-4y=50\)
b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x-1}{2}=\dfrac{y+3}{4}=\dfrac{z-5}{6}=\dfrac{-3x-4y+5z+3-12-25}{-3\cdot2-4\cdot4+5\cdot6}=\dfrac{16}{8}=2\)
Do đó: x=5; y=5; z=17
\(a,\dfrac{x^3}{8}=\dfrac{y^3}{27}=\dfrac{z^3}{64}\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\Rightarrow\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{z^2}{16}\)
Áp dụng t/c dtsbn:
\(\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{z^2}{16}=\dfrac{x^2+2y^2-3z^2}{4+18-48}=\dfrac{-650}{-26}=25\\ \Rightarrow\left\{{}\begin{matrix}x^2=100\\y^2=225\\z^2=400\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\pm10\\y=\pm15\\z=\pm20\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)\) có giá trị là hoán vị của \(\left(\pm10;\pm15;\pm20\right)\)
Cho x,y,z >0 tm x+y+z=3
C/m :\(\dfrac{x^3}{y^3+8}+\dfrac{y^3}{z^3+8}+\dfrac{z^3}{x^3+8}\ge\dfrac{1}{9}+\dfrac{2}{27}\left(xy+yz+zx\right)\)
Cái bài này bình thường :v
Đặt \(A=\dfrac{x^3}{y^3+8}+\dfrac{y^3}{z^3+8}+\dfrac{z^3}{x^3+8}\)
\(BDT\Leftrightarrow\dfrac{x^3}{y^3+8}+\dfrac{y^3}{z^3+8}+\dfrac{z^3}{x^3+8}-\dfrac{2}{27}\left(xy+yz+xz\right)\ge\dfrac{1}{9}\)
Áp dụng BĐT AM-GM ta có:
\(\dfrac{x^3}{y^3+8}+\dfrac{y+2}{27}+\dfrac{y^2-2y+4}{27}\)
\(\ge3\sqrt[3]{\dfrac{x^3}{y^3+8}\cdot\dfrac{y+2}{27}\cdot\dfrac{y^2-2y+4}{27}}=\dfrac{x}{3}\)
Tương tự cho 2 BĐT còn lại cũng có:
\(\dfrac{y^3}{z^3+8}+\dfrac{z+2}{27}+\dfrac{z^2-2z+4}{27}\ge\dfrac{y}{3};\dfrac{z^3}{x^3+8}+\dfrac{x+2}{27}+\dfrac{x^2-2x+4}{27}\ge\dfrac{z}{3}\)
Cộng theo vế 3 BĐT trên ta có:
\(A+\dfrac{x+y+z+6}{27}+\dfrac{x^2+y^2+z^2-2\left(x+y+z\right)+12}{27}\ge\dfrac{x+y+z}{3}\)
\(\Leftrightarrow A+\dfrac{9}{27}+\dfrac{\dfrac{\left(x+y+z\right)^2}{3}+6}{27}\ge1\)\(\Leftrightarrow A\ge\dfrac{1}{3}\)
Cần chứng minh \(VT=A-\dfrac{2}{27}\left(xy+yz+xz\right)\ge\dfrac{1}{9}=VP\)
\(\Leftrightarrow VT=\dfrac{1}{3}-\dfrac{2\cdot\dfrac{\left(x+y+z\right)^2}{3}}{27}=\dfrac{1}{9}=VP\) (đúng)
Xảy ra khi \(x=y=z=1\)
P/s:Trình bày hơi khó hiểu, thông cảm :v
( Bài này làm hồi lớp 9 rồi )
Dấu " = " xảy ra khi và chỉ khi \(x=y=z=1\)
Tìm số x,y,z biết:
\(\dfrac{x^3}{8}=\dfrac{y^3}{64}=\dfrac{z^3}{216}\) và \(2x^2+2y^2-z^2=1\)
\(\dfrac{x^3}{8}=\dfrac{y^3}{64}=\dfrac{z^3}{216}\)
\(\Leftrightarrow\left(\dfrac{x}{2}\right)^3=\left(\dfrac{y}{4}\right)^3=\left(\dfrac{z}{6}\right)^3\)
\(\Leftrightarrow\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{6}\)
Đặt : \(\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{6}=k\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2k\\y=4k\\z=6k\end{matrix}\right.\)
Mà \(2x^2+2y^2-z^2=1\)
\(\Leftrightarrow2.\left(2k\right)^2+2.\left(4k\right)^2-\left(6k\right)^2=1\)
\(\Leftrightarrow8k^2+32k^2-36k^2=1\)
\(\Leftrightarrow4k^2=1\)
\(\Leftrightarrow k^2=\dfrac{1}{4}\) \(\Leftrightarrow\left[{}\begin{matrix}k=\dfrac{1}{2}\\k=-\dfrac{1}{2}\end{matrix}\right.\)
+) \(k=\dfrac{1}{2}\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2.\dfrac{1}{2}=1\\y=4.\dfrac{1}{2}=2\\z=6.\dfrac{1}{2}=3\end{matrix}\right.\)
+) \(k=-\dfrac{1}{2}\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}.2=-1\\y=-\dfrac{1}{2}.4=-2\\z=-\dfrac{1}{2}.6=-3\end{matrix}\right.\)
Tìm x ; y ; z biết :
a. \(\dfrac{x}{10}=\dfrac{y}{6}=\dfrac{z}{27}\) và 5x+y-27 = 28
b. x : y:z = 5:4:2 và x3 - y3 + z3=69
c. \(\dfrac{x}{3}=\dfrac{z}{8}\) và -6y=72 ; 2x-9y=2
a) Tìm 2 số x và y cho biết: \(\dfrac{x}{3}\)=\(\dfrac{y}{4}\) và x + y = 28
b) Tìm 2 số x và y biết x : 2 = y : (-5) và x - y = (-7)
c) Tìm 3 số x, y, z biết rằng: \(\dfrac{x}{2}\)=\(\dfrac{y}{3}\) , \(\dfrac{y}{4}\)=\(\dfrac{z}{5}\) và x + y - z = 10
GIÚP MÌNH VỚI Ạ! TKS <3
a) Áp dụng tính chất dãy tỉ số bằng nhau ta được:
X/3 = y/4 = x/3 + y/4 = 28/7 = 4
=> x = 4 × 3 = 12
=> y = 4 × 4 = 16
Vậy x = 12, y = 16
B) Áp dụng tính chất dãy tỉ số bằng nhau ta được:
X/2 = y/(-5) = x/2 - y/(-5) = (-7)/7 = -1
=> x = -1 × 2 = -2
=> y = -1 × -5 = 5
Vậy x = -2, y = 5
C) làm tương tự như bài a, b
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
Tìm x,y,z biết:a) \(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{z}{10}\)và y-x=6
Tìm x,y,z biết:b) \(\dfrac{x}{8}=\dfrac{y}{3}=\dfrac{z}{7}\)và x-2y+z=18
a) Ta có: \(\dfrac{x}{2}=\dfrac{y}{5}\)
⇒\(\dfrac{y-x}{5-2}=\dfrac{6}{3}=2\)
\(\dfrac{x}{2}=2\Rightarrow x=4\)
\(\dfrac{y}{5}=2\Rightarrow y=10\)
\(\dfrac{z}{10}=2\Rightarrow z=20\)
b) Ta có: \(\dfrac{x}{8}=\dfrac{2y}{6}=\dfrac{z}{7}\)
\(\dfrac{x-2y+z}{8-6+7}=\dfrac{18}{9}=2\)
\(\dfrac{x}{8}=2\Rightarrow x=16\)
\(\dfrac{y}{3}=2\Rightarrow y=6\)
\(\dfrac{z}{7}=2\Rightarrow z=14\)
\(\dfrac{x^3}{8}=\dfrac{y^3}{64}=\dfrac{z^3}{216}\) và \(x^2+y^2+z^2=14\)
\(\dfrac{x^3}{8}=\dfrac{y^3}{64}=\dfrac{z^3}{216}\)
=>x/2=y/4=z/6
=>x/1=y/2=z/3=k
=>x=k; y=2k; z=3k
Ta có: x^2+y^2+z^2=14
=>k^2+4k^2+9k^2=14
=>14k^2=14
=>k^2=1
TH1: k=1
=>x=1; y=2; z=3
TH2: k=-1
=>x=-1; y=-2; z=-3
Tìm x;y;z biết
\(\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3}{z}=\dfrac{1}{x+y+z}\)
Áp dụng t/c dtsbn ta có:
\(\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3}{z}=\dfrac{1}{x+y+z}=\dfrac{y+z+1+x+z+2+x+y-3}{x+y+z}=\dfrac{2\left(x+y+z\right)}{x+y+z}=2\)
\(\dfrac{1}{x+y+z}=2\Rightarrow2x+2y+2z=1\Rightarrow x+y+z=0,5\Rightarrow\left\{{}\begin{matrix}x+y=0,5-z\\y+z=0,5-x\\x+z=0,5-y\end{matrix}\right.\\ \dfrac{y+z+1}{x}=2\Rightarrow y+z+1=2x\Rightarrow0,5-x+1=2x\Rightarrow x=0,5\\ \dfrac{x+z+2}{y}=2\Rightarrow x+z+2=2y\Rightarrow0,5-y+2=2y\Rightarrow y=\dfrac{5}{6}\\ \dfrac{x+y-3}{z}=2\Rightarrow x+y-3=2z\Rightarrow0,5-z-3=2z\Rightarrow z=-\dfrac{5}{6}\)
Cho 3 số thực dương x, y, z thoả mãn \(x+y+z=3\). Tìm giá trị nhỏ nhất của biểu thức: \(P=\dfrac{x^3}{y^3+8}+\dfrac{y^3}{z^3+8}+\dfrac{z^3}{x^3+8}-\dfrac{2}{27}\left(xy+yz+zx\right)\)