Violympic toán 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Ngô Thu Hiền

Tìm x,y,z biết\(\dfrac{x^2}{8}=\dfrac{y^3}{27}=\dfrac{z^3}{64};x^2+2y^2+3z^2=-650\). Nhớ giải đầy đủ nha.

Ngọc Hiền
6 tháng 10 2017 lúc 22:24

Ngô Thu Hiền Bn xem lại đề xem

Serena chuchoe
6 tháng 10 2017 lúc 22:49

Sửa đề: \(\dfrac{x^3}{8}=\dfrac{y^3}{27}=\dfrac{z^3}{64}\)\(x^2+2y^3+3z^3=630\)

Có:\(\dfrac{x^3}{8}=\dfrac{y^3}{27}=\dfrac{z^3}{64}\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)

\(\Rightarrow\dfrac{x^2}{4}=\dfrac{2y^2}{18}=\dfrac{3z^2}{48}\)\(x^2+2y^2+3z^2=630\)

Áp dụng t/c của dãy tỉ số bằng nhau có:

\(\dfrac{x^2}{4}=\dfrac{2y^2}{18}=\dfrac{3z^2}{48}=\dfrac{x^2+2y^2+3z^2}{70}=\dfrac{630}{70}=9\)

\(\Rightarrow\left\{{}\begin{matrix}x^2=36\\y^2=\dfrac{9\cdot18}{2}=81\\z^2=\dfrac{9\cdot48}{3}=144\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=6\\x=-6\end{matrix}\right.\\\left[{}\begin{matrix}y=9\\y=-9\end{matrix}\right.\\\left[{}\begin{matrix}z=12\\z=-12\end{matrix}\right.\end{matrix}\right.\)

Vậy ....................

P/s: Chỗ -650 sửa thành 630 vì \(x^2+2y^2+3z^2\ge0\) nên = -650 rất vô lí --> mk sửa với lại sửa thành 630 thì kq đẹp hơn :))

~ Nếu mà đề bạn đúng thì thay số vào là đc nhé ~


Các câu hỏi tương tự
Ngô Thu Hiền
Xem chi tiết
Mediodasabler
Xem chi tiết
Kudo Shinichi
Xem chi tiết
Đức Vương Hiền
Xem chi tiết
 nguyễn hà
Xem chi tiết
Nguyễn Thị Yến Nga
Xem chi tiết
morata
Xem chi tiết
Anh Triêt
Xem chi tiết
Đinh Hải Ngọc
Xem chi tiết