Bài 8: Tính chất của dãy tỉ số bằng nhau

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Ly Hoàng

Tìm số x,y,z biết:

\(\dfrac{x^3}{8}=\dfrac{y^3}{64}=\dfrac{z^3}{216}\)\(2x^2+2y^2-z^2=1\)

Nguyễn Thanh Hằng
19 tháng 10 2018 lúc 18:00

\(\dfrac{x^3}{8}=\dfrac{y^3}{64}=\dfrac{z^3}{216}\)

\(\Leftrightarrow\left(\dfrac{x}{2}\right)^3=\left(\dfrac{y}{4}\right)^3=\left(\dfrac{z}{6}\right)^3\)

\(\Leftrightarrow\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{6}\)

Đặt : \(\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{6}=k\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2k\\y=4k\\z=6k\end{matrix}\right.\)

\(2x^2+2y^2-z^2=1\)

\(\Leftrightarrow2.\left(2k\right)^2+2.\left(4k\right)^2-\left(6k\right)^2=1\)

\(\Leftrightarrow8k^2+32k^2-36k^2=1\)

\(\Leftrightarrow4k^2=1\)

\(\Leftrightarrow k^2=\dfrac{1}{4}\) \(\Leftrightarrow\left[{}\begin{matrix}k=\dfrac{1}{2}\\k=-\dfrac{1}{2}\end{matrix}\right.\)

+) \(k=\dfrac{1}{2}\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2.\dfrac{1}{2}=1\\y=4.\dfrac{1}{2}=2\\z=6.\dfrac{1}{2}=3\end{matrix}\right.\)

+) \(k=-\dfrac{1}{2}\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}.2=-1\\y=-\dfrac{1}{2}.4=-2\\z=-\dfrac{1}{2}.6=-3\end{matrix}\right.\)


Các câu hỏi tương tự
Phạm Băng Băng
Xem chi tiết
Charmaine
Xem chi tiết
Vân Nguyễn Thị
Xem chi tiết
kenin you
Xem chi tiết
võ huỳnh tấn sang
Xem chi tiết
Trần Hoài Nam
Xem chi tiết
thi hue nguyen
Xem chi tiết
Vân Nguyễn Thị
Xem chi tiết
Vân Nguyễn Thị
Xem chi tiết