Những câu hỏi liên quan
Xem chi tiết
Akai Haruma
29 tháng 1 2018 lúc 20:07

Lời giải:

Áp dụng BĐT Cauchy-Schwarz:

\(\text{VT}=\frac{\left ( \frac{a}{bc} \right )^2}{\frac{1}{c}}+\frac{\left ( \frac{b}{ca} \right )^2}{\frac{1}{a}}+\frac{\left ( \frac{c}{ab} \right )^2}{\frac{1}{b}}\geq \frac{\left ( \frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab} \right )^2}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}\)

\(\Leftrightarrow \text{VT}\geq \frac{\left ( \frac{a^2+b^2+c^2}{abc} \right )^2}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}\)

Theo hệ quả của BĐT AM-GM thì:

\(a^2+b^2+c^2\geq ab+bc+ac\)

\(\Rightarrow \text{VT}\geq \frac{\left ( \frac{ab+bc+ac}{abc} \right )^2}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}=\frac{\left ( \frac{1}{a}+\frac{1}{b}+\frac{1}{c} \right )^2}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

Ta có đpcm.

Dấu bằng xảy ra khi \(a=b=c\)

Bình luận (0)
Gay\
Xem chi tiết
asuna
Xem chi tiết
svtkvtm
3 tháng 3 2019 lúc 14:17

\(vì:a,b,c>0\Rightarrow\dfrac{1}{a};\dfrac{1}{b};\dfrac{1}{c}>0\)

\(Cosi:\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{2}{\sqrt{ab}}\ge\dfrac{2}{\dfrac{a+b}{2}}=\dfrac{4}{a+b}\)

\(\dfrac{4}{2a+b+c}\le\dfrac{1}{4}\left(\dfrac{4}{a+b}+\dfrac{4}{a+c}\right)\le\dfrac{1}{16}\left(\dfrac{8}{a}+\dfrac{4}{b}+\dfrac{4}{c}\right)=\dfrac{1}{2a}+\dfrac{1}{4b}+\dfrac{1}{4c}.tươngtự:\dfrac{4}{a+b+2c}\le\dfrac{1}{4a}+\dfrac{1}{4b}+\dfrac{1}{2c};\dfrac{4}{a+2b+c}\le\dfrac{1}{4a}+\dfrac{1}{2b}+\dfrac{1}{2c}.\text{cộng vế theo vế ta được:}\dfrac{4}{a+2b+c}+\dfrac{4}{2a+b+c}+\dfrac{4}{a+b+2c}\le\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\left(\text{đpcm}\right)\)

Bình luận (0)
Nguyễn Việt Lâm
3 tháng 3 2019 lúc 14:21

Áp dụng BĐT \(\dfrac{1}{x+y+z+t}\le\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}+\dfrac{1}{t}\right)\) với các số dương

Ta có: \(\dfrac{4}{a+a+b+c}\le\dfrac{4}{16}\left(\dfrac{1}{a}+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{1}{4}\left(\dfrac{2}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

\(\dfrac{4}{a+b+2c}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{2}{c}\right)\)

\(\dfrac{4}{a+2b+c}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{2}{b}+\dfrac{1}{c}\right)\)

Cộng vế với vế:

\(\dfrac{4}{2a+b+c}+\dfrac{4}{a+2b+c}+\dfrac{4}{a+b+2c}\le\dfrac{1}{4}\left(\dfrac{4}{a}+\dfrac{4}{b}+\dfrac{4}{c}\right)=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)

Dấu "=" xảy ra khi \(a=b=c\)

Bình luận (0)
Y
3 tháng 3 2019 lúc 14:22

* Ta cm bđt : \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\forall ab\)

+ \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)

\(\Leftrightarrow\dfrac{x+y}{xy}\ge\dfrac{4}{x+y}\)

\(\Leftrightarrow\left(x+y\right)^2\ge4xy\)

\(\Leftrightarrow\left(a+b\right)^2-4ab\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\ge0\)

Vì bđt thức cuối luôn đúng mà các phép biến đổi trên là tương đương nên ta có đpcm

Dấu "=" \(\Leftrightarrow x=y\)

+ Áp dụng bđt \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)

Dấu "=" \(\Leftrightarrow x=y\) ta có :

\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\) Dấu "=" xảy ra \(\Leftrightarrow a=b\)

\(\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{4}{b+c}\) Dấu "=" xảy ra \(\Leftrightarrow b=c\)

\(\dfrac{1}{c}+\dfrac{1}{a}\ge\dfrac{4}{a+c}\) Dấu "=" xảy ra \(\Leftrightarrow a=c\)

Do đó : \(2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge4\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\)

\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge2\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\)

+ Áp dụng bđt trên một lần nữa ta có :

\(\dfrac{1}{a+b}+\dfrac{1}{b+c}\ge\dfrac{4}{a+2b+c}\) Dấu "=" xảy ra \(\Leftrightarrow a=c\)

\(\dfrac{1}{b+c}+\dfrac{1}{c+a}\ge\dfrac{1}{a+b+2c}\) Dấu "=" xảy ra \(\Leftrightarrow a=b\)

\(\dfrac{1}{a+b}+\dfrac{1}{c+a}\ge\dfrac{4}{2a+b+c}\) Dấu "=" xảy ra \(\Leftrightarrow b=c\)

Do đó : \(2\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\ge\dfrac{4}{2a+b+c}\)

\(+\dfrac{4}{a+2b+c}+\dfrac{4}{a+b+2c}\)

=> đpcm

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)

Bình luận (0)
ILoveMath
Xem chi tiết
Eren
19 tháng 1 2022 lúc 22:43

Bài 1: 

a) Áp dụng bđt Cô - si:

\(\dfrac{a}{b^2}+\dfrac{1}{a}\ge\dfrac{2}{b}\)

Tương tự với 2 phân thức còn lại của vế trái rồi cộng lại, ta có:

\(\dfrac{a}{b^2}+\dfrac{b}{c^2}+\dfrac{c}{a^2}+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{2}{a}+\dfrac{2}{b}+\dfrac{2}{c}\)

=> đpcm

Bài dù a + b + c = 2021 hay 1 số bất kì thì bđt luôn \(\ge\dfrac{3}{2}\). Bạn có thể tham khảo bđt Nesbitt

Bình luận (0)
Minh Hiếu
19 tháng 1 2022 lúc 22:54

Bài 2:

\(P=\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)

\(=\dfrac{2021-\left(b+c\right)}{b+c}+\dfrac{2021-\left(c+a\right)}{c+a}+\dfrac{2021-\left(a+b\right)}{a+b}\)

\(=2021\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)-3\)

Áp dụng BĐT Svacxo, ta có

\(P\) ≥ \(\dfrac{9}{2}-3=\dfrac{3}{2}\)

Dấu"=" ⇔ ...

Bình luận (0)
Lê Phương Mai
19 tháng 1 2022 lúc 23:06

Sau khi đã đi tham khảo 7749 người thì đã cho ra một kết quả:v

Bài 2. \(P=\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)

\(P=\dfrac{a}{b+c}+1+\dfrac{b}{c+a}+1+\dfrac{c}{a+b}+1-3\)

\(P=\dfrac{a+b+c}{b+c}+\dfrac{a+b+c}{c+a}+\dfrac{a+b+c}{a+b}-3\)

\(P=\dfrac{(2a+2b+3c)( \dfrac{1}{b+c}+\dfrac{1}{c+a}+\dfrac{1}{a+b})}{2}-3 ≥ \dfrac{9}{2}-3=\dfrac{3}{2}\)

Dấu `"="` xảy ra:

\(\Leftrightarrow \begin{cases} a=b=c\\ a+b+c=2021 \end{cases} \)

\(\Leftrightarrow a=b=c=\dfrac{2021}{3}\)

Vậy \(min \) \(P=\dfrac{3}{2}\) khi \(a=b=c=\dfrac{2021}{3}\)

Bình luận (0)
Trần Hoàng Đạt
Xem chi tiết
Mysterious Person
8 tháng 12 2018 lúc 21:16

Câu hỏi t/tự

Bình luận (1)
Phương Anh Đỗ
Xem chi tiết
Phương Anh Đỗ
5 tháng 6 2018 lúc 22:36

lm giúp e vs ạkhocroi

Bình luận (0)
Lê Hà Vy
Xem chi tiết
Nguyễn Huy Thắng
3 tháng 8 2017 lúc 12:36

Chứng minh rằng: - K2PI – TOÁN THPT | Chia sẻ Tài liệu, đề thi, hỗ trợ giải toán

Bình luận (1)
Phan PT
Xem chi tiết
Nguyễn Việt Lâm
28 tháng 1 2021 lúc 0:21

\(P=\dfrac{a^2}{ab+\dfrac{1}{b}}+\dfrac{b^2}{bc+\dfrac{1}{c}}+\dfrac{c^2}{ca+\dfrac{1}{a}}\ge\dfrac{\left(a+b+c\right)^2}{ab+bc+ca+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}}\)

\(P\ge\dfrac{3\left(ab+bc+ca\right)}{ab+bc+ca+\dfrac{ab+bc+ca}{abc}}=\dfrac{3}{1+\dfrac{1}{abc}}=\dfrac{3abc}{1+abc}\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c\)

Bình luận (0)
Ngô Bá Hùng
27 tháng 1 2021 lúc 22:38

Với a, b, c > 0 có:

\(P=\dfrac{a}{b+2c}+\dfrac{b}{c+2a}+\dfrac{c}{a+2b}\\ =\dfrac{a^2}{a\left(b+2c\right)}+\dfrac{b^2}{b\left(c+2a\right)}+\dfrac{c^2}{c\left(a+2b\right)}\)

\(\Rightarrow P\ge\dfrac{\left(a+b+c\right)^2}{\left(1+\alpha\right)\left(ab+bc+ca\right)}\ge\dfrac{3\left(ab+bc+ca\right)}{\left(1+\alpha\right)\left(ab+bc+ca\right)}\)

chọn \(\alpha=\dfrac{1}{abc}\Rightarrow dpcm\) 

Bình luận (1)
Nhã Doanh
Xem chi tiết
hattori heiji
25 tháng 5 2018 lúc 22:15

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\)

=> bc+ac+ab=0

ta có

\(bc+ac=-ab\)

<=> \(\left(bc+ac\right)^2=a^2b^2\)

<=> \(b^2c^2+a^2c^2+2abc^2=a^2b^2\)

<=> \(b^2c^2+a^2c^2-a^2b^2=-2abc^2\)

tương tự

\(a^2b^2+b^2c^2-c^2a^2=-2ab^2c\)

\(c^2a^2+a^2b^2-b^2c^2=-2a^2bc\)

thay vào E ta đc

\(E=\dfrac{-a^2b^2c^2}{2ab^2c}-\dfrac{a^2b^2c^2}{2abc^2}-\dfrac{a^2b^2c^2}{2a^2bc}\)

=\(-\dfrac{ac}{2}-\dfrac{ab}{2}-\dfrac{bc}{2}=\dfrac{-\left(ac+ab+bc\right)}{2}=0\) (vì ac+bc+ab=0 cmt)

Bình luận (0)
Nguyễn Trần Huyền Anh
14 tháng 1 2022 lúc 16:00
Cho sao nha nhưng tui ko bít làm
Bình luận (1)
 Khách vãng lai đã xóa