Bài 1: Căn bậc hai

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phan PT

Cho a,b,c >0.Chứng minh:

\(P=\dfrac{a^2b}{ab^2+1}+\dfrac{b^2c}{bc^2+1}+\dfrac{c^2a}{ca^2+1}\ge\dfrac{3abc}{1+abc}\)

Nguyễn Việt Lâm
28 tháng 1 2021 lúc 0:21

\(P=\dfrac{a^2}{ab+\dfrac{1}{b}}+\dfrac{b^2}{bc+\dfrac{1}{c}}+\dfrac{c^2}{ca+\dfrac{1}{a}}\ge\dfrac{\left(a+b+c\right)^2}{ab+bc+ca+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}}\)

\(P\ge\dfrac{3\left(ab+bc+ca\right)}{ab+bc+ca+\dfrac{ab+bc+ca}{abc}}=\dfrac{3}{1+\dfrac{1}{abc}}=\dfrac{3abc}{1+abc}\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c\)

Ngô Bá Hùng
27 tháng 1 2021 lúc 22:38

Với a, b, c > 0 có:

\(P=\dfrac{a}{b+2c}+\dfrac{b}{c+2a}+\dfrac{c}{a+2b}\\ =\dfrac{a^2}{a\left(b+2c\right)}+\dfrac{b^2}{b\left(c+2a\right)}+\dfrac{c^2}{c\left(a+2b\right)}\)

\(\Rightarrow P\ge\dfrac{\left(a+b+c\right)^2}{\left(1+\alpha\right)\left(ab+bc+ca\right)}\ge\dfrac{3\left(ab+bc+ca\right)}{\left(1+\alpha\right)\left(ab+bc+ca\right)}\)

chọn \(\alpha=\dfrac{1}{abc}\Rightarrow dpcm\) 


Các câu hỏi tương tự
Hồ Minh Phi
Xem chi tiết
Vũ Tiền Châu
Xem chi tiết
Vũ Tiền Châu
Xem chi tiết
Vũ Tiền Châu
Xem chi tiết
cha gong-won
Xem chi tiết
Vũ Tiền Châu
Xem chi tiết
TTTT
Xem chi tiết
Phan PT
Xem chi tiết
Phan Đại Hoàng
Xem chi tiết