Lời giải:Áp dụng BĐT AM-GM và BĐT Cauchy-Schwarz:
\(\frac{bc}{a^2+1}=\frac{bc}{(a^2+b^2)+(a^2+c^2)}\leq \frac{1}{4}.\frac{(b+c)^2}{(a^2+b^2)+(a^2+c^2)}\leq \frac{1}{4}\left(\frac{b^2}{a^2+b^2}+\frac{c^2}{a^2+c^2}\right)\)
Hoàn toàn tương tự với các phân thức còn lại, ta có:
\(P\leq \frac{1}{4}\left(\frac{b^2+a^2}{a^2+b^2}+\frac{c^2+a^2}{a^2+c^2}+\frac{b^2+c^2}{b^2+c^2}\right)=\frac{3}{4}\)
(đpcm)
Dấu "=" xảy ra khi $a=b=c=\sqrt{\frac{1}{3}}$