5: (\(\dfrac{1}{3}\) - \(\dfrac{1}{4}\))2+ 0,2510\(\times\) 4\(\times\) 410 - (-12)4:64
>; <; =?
a) \(\dfrac{2}{3}\times\dfrac{4}{5}\) \(\dfrac{4}{5}\times\dfrac{2}{3}\)
b) \(\left(\dfrac{1}{3}\times\dfrac{2}{5}\right)\times\dfrac{3}{4}\) \(\dfrac{1}{3}\times\left(\dfrac{2}{5}\times\dfrac{3}{4}\right)\)
c) \(\left(\dfrac{1}{3}+\dfrac{2}{15}\right)\times\dfrac{3}{4}\) \(\dfrac{1}{3}\times\dfrac{3}{4}+\dfrac{2}{15}\times\dfrac{3}{4}\)
a) \(\dfrac{2}{3}\times\dfrac{4}{5}=\dfrac{4}{5}\times\dfrac{2}{3}\)
b) \(\left(\dfrac{1}{3}\times\dfrac{2}{5}\right)\times\dfrac{3}{4}=\dfrac{1}{3}\times\left(\dfrac{2}{5}\times\dfrac{3}{4}\right)\)
c) \(\left(\dfrac{1}{3}-\dfrac{2}{15}\right)\times\dfrac{3}{4}=\dfrac{1}{3}\times\dfrac{3}{4}+\dfrac{2}{15}\times\dfrac{3}{4}\)
a.\(\dfrac{2}{3}\times\dfrac{1}{4}-\dfrac{1}{3}\times\dfrac{1}{2}\) =
b.\(\dfrac{8}{5}\times\dfrac{1}{4}-\dfrac{2}{5}\times\dfrac{1}{2}-\dfrac{1}{2}\times\dfrac{1}{5}=\)
giải rõ ràng cho mình nhé
a) \(\dfrac{2}{3}\times\dfrac{1}{4}-\dfrac{1}{3}\times\dfrac{1}{2}=\dfrac{2}{12}-\dfrac{1}{6}=\dfrac{1}{6}-\dfrac{1}{6}=\dfrac{0}{6}=0\)
b) \(\dfrac{8}{5}\times\dfrac{1}{4}-\dfrac{2}{5}\times\dfrac{1}{2}-\dfrac{1}{2}\times\dfrac{1}{5}=\dfrac{8}{20}-\dfrac{2}{10}-\dfrac{1}{10}=\dfrac{4}{10}-\dfrac{2}{10}-\dfrac{1}{10}=\dfrac{4-2-1}{10}=\dfrac{1}{10}\)
a. 1/6 - 1/6 = 0 (hoặc 2/12 - 1/6= 2/12 - 2/12 = 0)
b. 4/5 - 1/2 x ( 2/5 - 1/5 ) = 4/5 - 1/2 x 1/5
= 4/5 x 2/10
= 4/25
\(\dfrac{1}{4}+\dfrac{1}{2}\times\dfrac{1}{3}\)
\(=\dfrac{1}{4}+\dfrac{1}{6}\)
\(=\dfrac{10}{24}=\dfrac{5}{12}\)
Tính:
a) \(\dfrac{2}{5}\times\dfrac{3}{8}\times\dfrac{3}{4}\) b) \(\dfrac{1}{3}\times\dfrac{1}{6}\times\dfrac{1}{9}\)
c) \(\dfrac{3}{4}:\dfrac{1}{5}:\dfrac{7}{8}\) d) \(\dfrac{3}{5}:\dfrac{1}{5}:\dfrac{1}{8}\)
a) $\frac{2}{5} \times \frac{3}{8} \times \frac{3}{4} = \frac{{2 \times 3 \times 3}}{{5 \times 8 \times 4}} = \frac{{18}}{{160}} = \frac{9}{{80}}$
b) $\frac{1}{3} \times \frac{1}{6} \times \frac{1}{9} = \frac{{1 \times 1 \times 1}}{{3 \times 6 \times 9}} = \frac{1}{{162}}$
c) $\frac{3}{4}:\frac{1}{5}:\frac{7}{8} = \frac{3}{4} \times \frac{5}{1} \times \frac{8}{7} = \frac{{3 \times 5 \times 8}}{{4 \times 1 \times 7}} = \frac{{120}}{{28}} = \frac{{30}}{7}$
d) $\frac{3}{5}:\frac{1}{5}:\frac{3}{8} = \frac{3}{5} \times \frac{5}{1} \times \frac{8}{3} = \frac{{3 \times 5 \times 8}}{{5 \times 1 \times 3}} = 8$
A = \(\dfrac{-19}{9}\times\dfrac{1}{2}-\dfrac{4}{11}\times\dfrac{-11}{9}+\left(-\dfrac{2}{3}\right)\)
B = \(\left(-\dfrac{15}{6}\right)\div\dfrac{-1}{2}+\dfrac{7}{-12}-\dfrac{1}{3}\times\dfrac{-11}{2}\)
C = \(\dfrac{3}{4}\times\left(-8\right)-\dfrac{1}{3}\times\dfrac{-7}{2}-\dfrac{5}{18}\)
\(A=\dfrac{-19}{9}.\dfrac{1}{2}-\dfrac{4}{11}.\dfrac{-11}{9}+\left(-\dfrac{2}{3}\right)=-\dfrac{23}{18}\)
\(B=\left(-\dfrac{15}{6}\right):\dfrac{-1}{2}+\dfrac{7}{-12}-\dfrac{1}{3}.\dfrac{-11}{2}=\dfrac{25}{4}\)
\(C=\dfrac{3}{4}.\left(-8\right)-\dfrac{1}{3}.\dfrac{-7}{2}-\dfrac{5}{18}=-\dfrac{46}{9}\)
\(A=\dfrac{-19}{18}+\dfrac{4}{9}-\dfrac{2}{3}=\dfrac{-19}{18}+\dfrac{8}{18}-\dfrac{12}{18}=\dfrac{-23}{18}\)
\(B=\dfrac{-5}{2}\cdot\dfrac{-2}{1}-\dfrac{7}{12}+\dfrac{11}{6}=\dfrac{5\cdot12-7+22}{12}=\dfrac{75}{12}=\dfrac{25}{4}\)
\(\dfrac{2}{3}\times\dfrac{4}{5}+\dfrac{1}{3}\times\dfrac{4}{5}\)
\(...=\dfrac{4}{5}x\left(\dfrac{2}{3}+\dfrac{1}{3}\right)\)
\(=\dfrac{4}{5}x1\)
\(=\dfrac{4}{5}\)
\(\dfrac{2}{3}\times\dfrac{4}{5}+\dfrac{1}{3}\times\dfrac{4}{5}\\ =\dfrac{4}{5}\times\left(\dfrac{2}{3}+\dfrac{1}{3}\right)\\ =\dfrac{4}{5}\times1\\ =\dfrac{4}{5}\)
\(\dfrac{2}{3}.\dfrac{4}{5}+\dfrac{1}{3}.\dfrac{4}{5}\)
\(=\dfrac{4}{5}.\left(\dfrac{2}{3}+\dfrac{1}{3}\right)=\dfrac{4}{5}.1=\dfrac{4}{5}\)
\(\dfrac{15}{16}\div\dfrac{5}{8}\times\dfrac{3}{4}\)
\(\dfrac{21}{4}\times\dfrac{16}{14}\times\dfrac{1}{2}\times\dfrac{8}{3}\)
\(\dfrac{15}{16}:\dfrac{5}{8}\times\dfrac{3}{4}\)
\(=\dfrac{15}{16}\times\dfrac{8}{5}\times\dfrac{3}{4}\)
\(=\dfrac{3}{2}\times\dfrac{3}{4}\)
\(=\dfrac{9}{8}\)
_________________
\(\dfrac{21}{4}\times\dfrac{16}{14}\times\dfrac{1}{2}\times\dfrac{8}{3}\)
\(=6\times\dfrac{4}{3}\)
\(=8\)
\(\dfrac{2}{3}\times\dfrac{3}{4}\times\dfrac{4}{5}\div\dfrac{1}{5}\)
\(\dfrac{2}{3}x\dfrac{3}{4}x\dfrac{4}{5}x5=\dfrac{2x3x4x5}{3x4x5}=2\)
2/3 x3/4 x4/5 : 1/5
= 2/4 x4/5 :1/5
= 2/5 : 1/5
= 2
Tính
a, 4\(\times\left(-\dfrac{1}{2}\right)^3-2\times\left(-\dfrac{1}{2}\right)^2+3\times\left(-\dfrac{1}{2}\right)+1\)
b, \(\dfrac{4^6\times9^5+6^9\times120}{-8^4\times3^{12}+6^{11}}\)
c, \(\dfrac{155-\dfrac{10}{7}-\dfrac{5}{11}+\dfrac{5}{23}}{403-\dfrac{26}{7}-\dfrac{13}{11}+\dfrac{12}{23}}+\dfrac{\dfrac{3}{5}+\dfrac{3}{13}-0,9}{\dfrac{7}{91}+0,2-\dfrac{3}{10}}\)
d,\(\dfrac{30\times4^7\times3^{29}-5\times14^5\times2^{12}}{54\times6^{14}\times9^7-12\times8^5\times7^5}\)
a, \(4\times\left(-\dfrac{1}{2}\right)^3-2\times\left(-\dfrac{1}{2}\right)^2+3\times\left(-\dfrac{1}{2}\right)+1\)
\(=\left(-\dfrac{1}{2}\right)\left[\left(4\times-\dfrac{1}{2}\right)-\left(2\times-\dfrac{1}{2}\right)+3\right]+1\)
\(=\left(-\dfrac{1}{2}\right)\left(-2+1+3\right)+1\)
\(=\left(-\dfrac{1}{2}\right)2+1\)
\(=-1+1\)
\(=0\)
@Trịnh Thị Thảo Nhi
a, 4×(−12)3−2×(−12)2+3×(−12)+14×(−12)3−2×(−12)2+3×(−12)+1
=(−12)[(4×−12)−(2×−12)+3]+1=(−12)[(4×−12)−(2×−12)+3]+1
=(−12)(−2+1+3)+1=(−12)(−2+1+3)+1
=(−12)2+1=(−12)2+1
=−1+1=−1+1
=0=0
tìm x \(\in\) Q biết rằng
\(\dfrac{11}{12}\) - ( \(\dfrac{2}{5}\) + x ) = \(\dfrac{2}{3}\)
2x \(\times\) ( x - \(\dfrac{1}{7}\) ) = 0
\(\dfrac{3}{4}\) + \(\dfrac{1}{4}\) : x = \(\dfrac{2}{5}\)
1) \(\dfrac{11}{12}-\left(\dfrac{2}{5}+x\right)=\dfrac{2}{3}\)
\(\Leftrightarrow\dfrac{11}{12}-\dfrac{2}{5}-x=\dfrac{2}{3}\)
\(\Leftrightarrow x=\dfrac{11}{12}-\dfrac{2}{5}-\dfrac{2}{3}\)
\(\Leftrightarrow x=-\dfrac{3}{20}\)
2) \(2x\left(x-\dfrac{1}{7}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=0\\x-\dfrac{1}{7}=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{7}\end{matrix}\right.\)
3) \(\dfrac{3}{4}+\dfrac{1}{4}:x=\dfrac{2}{5}\)
\(\Leftrightarrow\dfrac{1}{4x}=\dfrac{2}{5}-\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{1}{4x}=-\dfrac{7}{20}\)
\(\Leftrightarrow4x=-\dfrac{20}{7}\)
\(\Leftrightarrow x=-\dfrac{5}{7}\)