Câu 1. (1 điểm)
Giải phương trình $\sqrt{{{x}^{2}}-3x+3}=2x-1$.
giải phương trình sau \(2x^3-2x+\sqrt{2x^3-3x+1}=3x+1+\sqrt[3]{x^2+2}\)
Bạn coi lại đề xem có sai không chứ nghiệm giải ra xấu cực. Và phương trình không rút gọn hết nghe cũng rất vô lý.
giải phương trình: \(x^2-2x+3=\sqrt{2x^2-x}+\sqrt{1+3x-3x^2}\)
giải phương trình vô tỉ sau
câu 1) \(\sqrt{2x^2-1}+x\sqrt{2x-1}=2x^2\)
câu2) \(\sqrt[2016]{x^2+3x-3}+\sqrt[2016]{-x^2-3x+5}=2\)
câu 3) \(2x^2-2x+11=3\sqrt[3]{4x-4}\)
a)ĐK:..... tự làm
\(\Leftrightarrow\sqrt{2x^2-1}-1+x\sqrt{2x-1}-1=2x^2-2\)
\(\Leftrightarrow\frac{2x^2-1-1}{\sqrt{2x^2-1}+1}+\frac{x^2\left(2x-1\right)-1}{x\sqrt{2x-1}+1}=2\left(x^2-1\right)\)
\(\Leftrightarrow\frac{2x^2-2}{\sqrt{2x^2-1}+1}+\frac{2x^3-x^2-1}{x\sqrt{2x-1}+1}=2\left(x-1\right)\left(x+1\right)\)
\(\Leftrightarrow\frac{2\left(x-1\right)\left(x+1\right)}{\sqrt{2x^2-1}+1}+\frac{\left(x-1\right)\left(2x^2+x+1\right)}{x\sqrt{2x-1}+1}-2\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(\frac{2\left(x+1\right)}{\sqrt{2x^2-1}+1}+\frac{2x^2+x+1}{x\sqrt{2x-1}+1}-2\left(x+1\right)\right)=0\)
\(\Rightarrow x-1=0\Rightarrow x=1\)
b)trình bày lại ý tưởng
ĐK:....
Áp dụng BĐT AM-GM ta có:
\(\sqrt[2016]{x^2+3x-3}\le\frac{x^2+3x-3+1+1+....+1}{2016}\text{(2015 số 1)}\)
\(\sqrt[2016]{-x^2-3x+5}\le\frac{-x^2-3x+5+1+1+....+1}{2016}\left(\text{2015 số 1,too}\right)\)
Cộng theo vế 2 BĐT trên ta có:
\(VT\le\frac{x^2+3x-3-x^2-3x+5+1+1+....+1}{2016}\left(\text{4030 số 1}\right)\)
\(=\frac{-3+5+1+1+....+1}{2016}=\frac{4032}{2016}=VP\)
Xảy ra khi \(x=1\) (thực ra còn x=-4 nữa cơ mà ko thỏa mẵn điều kiện để xài AM-GM)
c) Câu này sai đề nhé
Giải phương trình:
`x(3-\sqrt{3x-1})=\sqrt{3x^2+2x-1}-x\sqrt{x+1}+1`
Chú Lâm cíu cháu :<
ĐKXĐ: ...
\(\Leftrightarrow3x-1-x\sqrt{3x-1}+x\sqrt{x+1}-\sqrt{\left(x+1\right)\left(3x-1\right)}=0\)
\(\Leftrightarrow\sqrt{3x-1}\left(\sqrt{3x-1}-x\right)-\sqrt{x+1}\left(\sqrt{3x-1}-x\right)=0\)
\(\Leftrightarrow\left(\sqrt{3x-1}-\sqrt{x+1}\right)\left(\sqrt{3x-1}-x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{3x-1}=\sqrt{x+1}\\\sqrt{3x-1}=x\end{matrix}\right.\)
\(\Leftrightarrow...\)
ĐKXĐ: x \(\ge\)\(\dfrac{1}{3}\)
pt\(\Leftrightarrow\)x(\(\sqrt{x+1}-\sqrt{3x-1}\))+\(\sqrt{3x-1}\left(\sqrt{3x-1}-\sqrt{x+1}\right)\)=0
\(\Leftrightarrow\)(\(\sqrt{x+1}-\sqrt{3x-1}\))(1-\(\sqrt{3x-1}\))=0
\(\Leftrightarrow\)\(\left[{}\begin{matrix}\sqrt{x+1}=\sqrt{3x-1}\\1=\sqrt{3x-1}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{2}{3}\end{matrix}\right.\)(t/m x \(\ge\)\(\dfrac{1}{3}\))
Vậy.....................
\(x\left(3-\sqrt{3x-1}\right)=\sqrt{3x^2+2x-1}-x\sqrt{x+1}+1\)(Đk x≥\(\dfrac{1}{3}\))
ta có:\(x\left(3-\sqrt{3x-1}\right)\)
=\(3x-x\sqrt{3x-1}\)
=\(3x-1-x\sqrt{3x-1}+1\)
=\(\sqrt{3x-1}\left(\sqrt{3x-1}-x\right)+1\)
Ta có \(\sqrt{3x^2+2x-1}-x\sqrt{x+1}+1\)
=\(\sqrt{x^2+2x+1-2+2x^2}-x\sqrt{x+1}+1\)
=\(\sqrt{\left(x+1\right)\left(3x-1\right)}-x\sqrt{x+1}+1\)
=\(\sqrt{x+1}\left(\sqrt{3x-1}-x\right)+1\)
ta có \(x\left(3-\sqrt{3x-1}\right)=\sqrt{3x^2+2x-1}-x\sqrt{x+1}+1\)
⇔\(\sqrt{3x-1}\left(\sqrt{3x-1}-x\right)+1\)=\(\sqrt{x+1}\left(\sqrt{3x-1}-x\right)+1\)
⇔\(\sqrt{3x-1}\left(\sqrt{3x-1}-x\right)=\sqrt{x+1}\left(\sqrt{3x-1}-x\right)\)
⇔\(\sqrt{3x-1}=\sqrt{x+1}\)
⇔\(3x-1=x+1\)
⇔\(2x=2\)
⇔x=1(N)
Vậy x=1
Giải phương trình:
\(\sqrt[3]{x^2+3x+1}+x^2=\sqrt[3]{5x+1}+2x\)
Đặt \(\left\{{}\begin{matrix}\sqrt[3]{x^2+3x+1}=a\\\sqrt[3]{5x+1}=b\end{matrix}\right.\)
\(\Rightarrow a+a^3-b^3=b\)
\(\Leftrightarrow a-b+\left(a-b\right)\left(a^2+ab+b^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2+1\right)=0\)
\(\Leftrightarrow a=b\)
\(\Leftrightarrow\sqrt[3]{x^2+3x+1}=\sqrt[3]{5x+1}\)
\(\Leftrightarrow x^2+3x+1=5x+1\)
\(\Leftrightarrow...\)
GIẢI PHƯƠNG TRÌNH VÔ TỶ BẰNG PHƯƠNG PHÁP BẤT ĐẲNG THỨC
Giải phương trình
\(\sqrt{x^3+2x}+\sqrt{3x-1}=\sqrt{x^3+4x^2+4x+1}\)
Dạ em không biết ạ,tại vì em mới học lớp 4 ạ,em xin lỗi ạ
Giải phương trình: \(2x^3-x^2+\sqrt{2x^3-3x+1}=3x+1+\sqrt[3]{x^2+2}\)
ĐK \(\hept{\begin{cases}x\ge1\\\frac{-1-\sqrt{3}}{2}\le x\le\frac{-1+\sqrt{3}}{2}\end{cases}}\)
\(PT\Leftrightarrow2x^3-x^2-3x-1+\sqrt{2x^3-3x+1}-\sqrt[3]{x^2+2}=0\)
Đặt \(\sqrt{2x^3-3x+1}=a,\sqrt[3]{x^2+2}=b\left(a,b\ge0\right)\)
\(PT\Leftrightarrow a^2-b^3+a-b=0\)
\(\Rightarrow a=b=1\)
Tính ra
Bạn giải thích cho mình ba dòng cuối đi
Ý là vậy :P
\(\Leftrightarrow2x^3-x^2-3x-1+\sqrt{2x^3-3x+1}-\sqrt[3]{x^2+2}=0\)
\(\Leftrightarrow\left(\sqrt[3]{2x^3-3x+1}-\sqrt[3]{x^2+2}\right)\left[\sqrt[3]{\left(2x^3-3x+1\right)^2}+\sqrt[3]{2x^2-3x+1}.\sqrt[3]{x^2+2}+\sqrt[3]{\left(x^2+2\right)^2}+1\right]=0\)\(\Leftrightarrow\sqrt[3]{2x^3-3x+1}=\sqrt[3]{x^2+2}\)
Đến đây dễ rồi nhé :P đặt dễ nhìn hơn thooiii :D
Giải phương trình:
1. \(5x^2+2x+10=7\sqrt{x^4+4}\)
2. \(\dfrac{4}{x}+\sqrt{x-\dfrac{1}{x}}=x+\sqrt{2x-\dfrac{5}{x}}\)
3. \(\sqrt{x^2+2x}=\sqrt{3x^2+4x+1}-\sqrt{3x^2+4x+1}\)
Giải các phương trình, bất phương trình sau:
1) \(\sqrt{3x+7}-5< 0\)
2) \(\sqrt{-2x-1}-3>0\)
3) \(\dfrac{\sqrt{3x-2}}{6}-3=0\)
4) \(-5\sqrt{-x-2}-1< 0\)
5) \(-\dfrac{2}{3}\sqrt{-3-x}-3>0\)
1) \(\sqrt[]{3x+7}-5< 0\)
\(\Leftrightarrow\sqrt[]{3x+7}< 5\)
\(\Leftrightarrow3x+7\ge0\cap3x+7< 25\)
\(\Leftrightarrow x\ge-\dfrac{7}{3}\cap x< 6\)
\(\Leftrightarrow-\dfrac{7}{3}\le x< 6\)
giải phương trình sau:
a)\(2\left(1-x\right)\sqrt{x^2+2x-1}+2x+1=x^2\)
b)\(\sqrt{5x-1}+\sqrt[3]{9-x}=2x^2+3x-1\)
a.
ĐKXĐ: \(x^2+2x-1\ge0\)
\(x^2+2x-1+2\left(x-1\right)\sqrt{x^2+2x-1}-4x=0\)
Đặt \(\sqrt{x^2+2x-1}=t\ge0\)
\(\Rightarrow t^2+2\left(x-1\right)t-4x=0\)
\(\Delta'=\left(x-1\right)^2+4x=\left(x+1\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}t=1-x+x+1=2\\t=1-x-x-1=-2x\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{x^2+2x-1}=2\\\sqrt{x^2+2x-1}=-2x\left(x\le0\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+2x-5=0\\3x^2-2x+1=0\left(vn\right)\end{matrix}\right.\)
\(\Rightarrow x=-1\pm\sqrt{6}\)
b.
ĐKXĐ: \(x\ge\dfrac{1}{5}\)
\(2x^2+x-3+2x-\sqrt{5x-1}+2-\sqrt[3]{9-x}=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x+3\right)+\dfrac{\left(x-1\right)\left(4x-1\right)}{2x+\sqrt[]{5x-1}}+\dfrac{x-1}{4+2\sqrt[3]{9-x}+\sqrt[3]{\left(9-x\right)^2}}=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x+3+\dfrac{4x-1}{2x+\sqrt[]{5x-1}}+\dfrac{1}{4+2\sqrt[3]{9-x}+\sqrt[3]{\left(9-x\right)^2}}\right)=0\)
\(\Leftrightarrow x=1\) (ngoặc đằng sau luôn dương)