Ai tách giúp mình biểu thức này với ạ
\(\dfrac{x+\sqrt{x}}{3\sqrt[]{x}-1}\)
Mn ơi giúp mik câu này với ạ !
cho biểu thức P=\(\left(3-\dfrac{3}{\sqrt{x}-1}\right)\):\(\left(\dfrac{x+2}{x+\sqrt{x}-2}-\dfrac{\sqrt{x}}{\sqrt{x}+2}\right)\) với x ≥ 0 ;x ≠ 4
a) Rút gọn biểu thức P
b) Tìm giá trị của x để P=\(\dfrac{4\sqrt{x}-1}{\sqrt{x}}\)
a) \(P=\left(3-\dfrac{3}{\sqrt{x}-1}\right):\left(\dfrac{x+2}{x+\sqrt{x}-2}-\dfrac{\sqrt{x}}{\sqrt{x}+2}\right)\)
\(=\left(\dfrac{3\left(\sqrt{x}-1\right)-3}{\sqrt{x}-1}\right):\left[\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x+2}\right)}-\dfrac{\sqrt{x}}{\sqrt{x}+2}\right]\)
\(=\dfrac{3\sqrt{x}-3-3}{\sqrt{x}-1}:\dfrac{x+2-\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{3\sqrt{x}-6}{\sqrt{x}-1}:\dfrac{x+2-x+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{3\sqrt{x}-6}{\sqrt{x}-1}:\dfrac{\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{3\sqrt{x}-6}{\sqrt{x}-1}:\dfrac{1}{\sqrt{x}-1}\)
\(=\dfrac{3\sqrt{x}-6}{\sqrt{x}-1}.\left(\sqrt{x}-1\right)\)
\(=3\sqrt{x}-6\)
b) \(P=\dfrac{4\sqrt{x}-1}{\sqrt{x}}\)
\(\Leftrightarrow3\sqrt{x}-6=\dfrac{4\sqrt{x}-1}{\sqrt{x}}\) (1)
ĐKXĐ: \(x>0\)
\(\left(1\right)\Leftrightarrow3x-6\sqrt{x}=4\sqrt{x}-1\)
\(\Leftrightarrow3x-6\sqrt{x}-4\sqrt{x}+1=0\)
\(\Leftrightarrow3x-10\sqrt{x}+1=0\) (2)
Đặt \(t=\sqrt{x}\ge0\)
\(\left(2\right)\Leftrightarrow3t^2-10t+1=0\)
\(\Delta'=25-4=22\)
Phương trình có hai nghiệm phân biệt:
\(t_1=\dfrac{5+\sqrt{22}}{3}\) (nhận)
\(t_2=\dfrac{5-\sqrt{22}}{3}\) (nhận)
Với \(t=\dfrac{5+\sqrt{22}}{3}\) \(\Leftrightarrow\sqrt{x}=\dfrac{5+\sqrt{22}}{3}\Leftrightarrow x=\dfrac{47+10\sqrt{22}}{9}\) (nhận)
Với \(t=\dfrac{5-\sqrt{22}}{3}\Leftrightarrow\sqrt{x}=\dfrac{5-\sqrt{22}}{3}\Leftrightarrow x=\dfrac{47-10\sqrt{22}}{9}\) (nhận)
Vậy \(x=\dfrac{47+10\sqrt{22}}{9};x=\dfrac{47-10\sqrt{22}}{9}\) thì \(P=\dfrac{4\sqrt{x}-1}{\sqrt{x}}\)
a: \(P=\dfrac{3\sqrt{x}-3-3}{\sqrt{x}-1}:\dfrac{x+2-x+\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{3\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{x}+2}=3\sqrt{x}-6\)
b: P=(4căn x-1)/căn x
=>3x-6căn x-4căn x+1=0
=>3x-10căn x+1=0
=>x=(47+10căn 22)/9 hoặc x=(47-10căn 22)/9
Tìm giá trị nguyên của biểu thức \(A=\dfrac{\sqrt{x}}{6\sqrt{x}+1}\)
Giúp mình với ạ. Câu này không lấy tử chia mẫu được
Ta có:\(6A=\dfrac{6\sqrt{x}}{6\sqrt{x}+1}=\dfrac{6\sqrt{x}+1-1}{6\sqrt{x}+1}=1-\dfrac{1}{6\sqrt{x}+1}\)
Để \(A\in Z\) thì \(\dfrac{1}{6\sqrt{x}+1}=1\Leftrightarrow6\sqrt{x}+1=1\Leftrightarrow6\sqrt{x}=0\Leftrightarrow x=0\)
Với x=0 => A=0
Rút gọn biểu thức \(P=\left(\dfrac{1}{\sqrt{x}+2}+\dfrac{1}{\sqrt{x}-2}\right)\div\dfrac{2}{x-2\sqrt{x}}\) , với \(x>0,x\ne4\)
Ai giúp minh với ạ
\(P=\left(\dfrac{\sqrt{x}-2}{x-4}+\dfrac{\sqrt{x}+2}{x-4}\right).\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{2}\)
\(=\left(\dfrac{\sqrt{x}-2+\sqrt{x}+2}{x-4}\right).\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{2}\)
\(=\dfrac{2\sqrt{x}.\sqrt{x}.\left(\sqrt{x}-2\right)}{2.\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{x}{\sqrt{x}+2}\)
rút gọn biểu thức sau
D=\(\left(\dfrac{\sqrt{x}}{\sqrt{x}+1}+\dfrac{3\sqrt{x}+1}{x-1}\right):\dfrac{\sqrt{x}-2}{\sqrt{x}-1}\)
giải chi tiết hộ mình với ạ!!!
\(D=\left(\dfrac{\sqrt{x}}{\sqrt{x}+1}+\dfrac{3\sqrt{x}+1}{x-1}\right):\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\left(x\ge0;x\ne1\right)\\ D=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)+3\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}-1}{\sqrt{x}+2}\\ D=\dfrac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}+1}\cdot\dfrac{1}{\sqrt{x}+2}=\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\)
Ai biết bài này giải hộ mình với
a) Rút gọn biểu thức A=\(\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\)
b) Cho x,y,z thỏa mãn: xy+yz+xz=1
Hãy tính giá trị biểu thức:A=\(x\sqrt{\dfrac{\left(1+y^2\right)\left(1+z^2\right)}{\left(1+x^2\right)}}+y\sqrt{\dfrac{\left(1+z^2\right)\left(1+x^2\right)}{\left(1+y^2\right)}}+z\sqrt{\dfrac{\left(1+x^2\right)\left(1+y^2\right)}{\left(1+z^2\right)}}\)Cảm ơn
Cho biểu thức P= \(\dfrac{\sqrt{x}}{\sqrt{x}-1}\)+\(\dfrac{3}{\sqrt{x}+1}\)-\(\dfrac{6\sqrt{x}-4}{x-1}\) Với x >=0 , x khác 1
a) Rút gọn biểu thức ( câu này mình rút gọn = \(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\))
b) Tìm giá trị của x để P =-1
c) Tìm x thuộc z để P thuộc z
d) Só ánh P với 1
e)Tìm giá trị nhỏ nhất của P
mình đag cần gấp ạ!
a) \(P=\dfrac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)
b) \(P=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=-1\)
\(\Leftrightarrow-\sqrt{x}-1=\sqrt{x}-1\Leftrightarrow2\sqrt{x}=0\Leftrightarrow x=0\left(tm\right)\)
c) \(P=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}\in Z\)
\(\Rightarrow\sqrt{x}+1\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)
Kết hợp đk:
\(\Rightarrow x\in\left\{0\right\}\)
d) \(P=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=\dfrac{\left(\sqrt{x}+1\right)-2}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}< 1\)
\(a,P=\dfrac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ P=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\\ b,P=-1\Leftrightarrow\sqrt{x}-1=-\sqrt{x}-1\\ \Leftrightarrow2\sqrt{x}=0\Leftrightarrow x=0\left(tm\right)\\ c,P\in Z\Leftrightarrow\dfrac{\sqrt{x}+1-2}{\sqrt{x}+1}\in Z\Leftrightarrow1-\dfrac{2}{\sqrt{x}+1}\in Z\\ \Leftrightarrow2⋮\sqrt{x}+1\\ \Leftrightarrow\sqrt{x}+1\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\\ \Leftrightarrow\sqrt{x}+1\in\left\{1;2\right\}\left(\sqrt{x}+1\ge1\right)\\ \Leftrightarrow\sqrt{x}\in\left\{0;1\right\}\\ \Leftrightarrow x\in\left\{0;1\right\}\)
\(d,P=\dfrac{\sqrt{x}+1-2}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}\)
Có \(\dfrac{2}{\sqrt{x}+1}>0\left(2>0;\sqrt{x}+1>0\right)\Leftrightarrow1-\dfrac{2}{\sqrt{x}+1}< 1\Leftrightarrow P< 1\)
\(e,P=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}\)
Có \(\sqrt{x}+1\ge1\Leftrightarrow\dfrac{2}{\sqrt{x}+1}\le2\Leftrightarrow1-\dfrac{2}{\sqrt{x}+1}\ge1-2=-1\)
\(P_{min}=-1\Leftrightarrow x=0\)
có thể giúp mình giải bài này với đc k ạ mình đang cần gấp (xin cảm ơn)
Bài 1:
a,\(3x-7\sqrt{x}+4=0\)
b, \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)
c, \(\dfrac{\sqrt{x}-2}{\sqrt{x}-4}=\dfrac{6-\sqrt{x}}{7-\sqrt{x}}\)
d, \(\sqrt{x-3}-\dfrac{5}{3}\sqrt{9x-27}+\dfrac{3}{2}\sqrt{4x-12}=-1\)
Bài 2:
a, \(\sqrt{x^2+6x+9}=3x-6\)
b, \(\sqrt{3x^2}=x+2\)
c, \(\sqrt{x^2-4x+4}-2x+5=0\)
d, \(x^2-2\sqrt{7x}+7=0\)
Bài 3:
a, \(\sqrt{3+x}+\sqrt{6-x}=3\)
b, \(\sqrt{3+x}-\sqrt{2-x}=1\)
Bài 2
b, `\sqrt{3x^2}=x+2` ĐKXĐ : `x>=0`
`=>(\sqrt{3x^2})^2=(x+2)^2`
`=>3x^2=x^2+4x+4`
`=>3x^2-x^2-4x-4=0`
`=>2x^2-4x-4=0`
`=>x^2-2x-2=0`
`=>(x^2-2x+1)-3=0`
`=>(x-1)^2=3`
`=>(x-1)^2=(\pm \sqrt{3})^2`
`=>` $\left[\begin{matrix} x-1=\sqrt{3}\\ x-1=-\sqrt{3}\end{matrix}\right.$
`=>` $\left[\begin{matrix} x=1+\sqrt{3}\\ x=1-\sqrt{3}\end{matrix}\right.$
Vậy `S={1+\sqrt{3};1-\sqrt{3}}`
Bài 1
a, `3x-7\sqrt{x}+4=0` ĐKXĐ : `x>=0`
`<=>3x-3\sqrt{x}-4\sqrt{x}+4=0`
`<=>3\sqrt{x}(\sqrt{x}-1)-4(\sqrt{x}-1)=0`
`<=>(3\sqrt{x}-4)(\sqrt{x}-1)=0`
TH1 :
`3\sqrt{x}-4=0`
`<=>\sqrt{x}=4/3`
`<=>x=16/9` ( tm )
TH2
`\sqrt{x}-1=0`
`<=>\sqrt{x}=1` (tm)
Vậy `S={16/9;1}`
b, `1/2\sqrt{x-1}-9/2\sqrt{x-1}+3\sqrt{x-1}=-17` ĐKXĐ : `x>=1`
`<=>(1/2-9/2+3)\sqrt{x-1}=-17`
`<=>-\sqrt{x-1}=-17`
`<=>\sqrt{x-1}=17`
`<=>x-1=289`
`<=>x=290` ( tm )
Vậy `S={290}`
Bài 1:
a) Ta có: \(3x-7\sqrt{x}+4=0\)
\(\Leftrightarrow3x-3\sqrt{x}-4\sqrt{x}+4=0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(3\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{9}\end{matrix}\right.\)
b) Ta có: \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)
\(\Leftrightarrow\sqrt{x-1}\cdot\left(-1\right)=-17\)
\(\Leftrightarrow\sqrt{x-1}=17\)
\(\Leftrightarrow x-1=289\)
hay x=290
cho A=\(\dfrac{1}{\sqrt{x}+\sqrt{x-1}}-\dfrac{1}{\sqrt{x}-\sqrt{x-1}}-\dfrac{x\sqrt{x-x}}{1-\sqrt{x}}\)
rút gọn biểu thức A
giúp mình với mình cảm ơn
\(A=\dfrac{\sqrt{x}-\sqrt{x-1}-\sqrt{x}-\sqrt{x-1}}{x-x+1}=-2\sqrt{x-1}\)
1.A=\(\dfrac{\sqrt{x}}{\sqrt{x}+3}\) và B=\(\dfrac{2\sqrt{x}}{\sqrt{x}-3}\) \(-\dfrac{3x+9}{x-9}\) với x ≥ 0,x ≠9
a) Tính giá trị biểu thức A khi x=16
b) Chứng minh A+3=\(\dfrac{3}{\sqrt{x}+3}\)
Mn giúp mk vs nhé ạ!!!
Rút gọn biểu thức:
A = \(\left(\dfrac{\sqrt{x}+1}{\sqrt{xy}+1}+\dfrac{\sqrt{xy}+\sqrt{x}}{1-\sqrt{xy}}+1\right):\left(1-\dfrac{\sqrt{xy}+\sqrt{x}}{\sqrt{xy}-1}-\dfrac{\sqrt{x}+1}{\sqrt{xy}+1}\right)\)
Giúp mk làm bài này với ạ!!!
\(A=\left(\dfrac{\sqrt{x}+1}{\sqrt{xy}+1}+\dfrac{\sqrt{xy}+\sqrt{x}}{1-\sqrt{xy}}+1\right):\left(1-\dfrac{\sqrt{xy}+\sqrt{x}}{\sqrt{xy}-1}-\dfrac{\sqrt{x}+1}{\sqrt{xy}+1}\right)\)
\(A=\left(\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{xy}-1\right)-\sqrt{x}\left(\sqrt{y}+1\right)\left(\sqrt{xy}+1\right)}{\left(\sqrt{xy}+1\right)\left(\sqrt{xy}-1\right)}+1\right)\)
\(:\left(1-\dfrac{\sqrt{x}\left(\sqrt{y}+1\right)\left(\sqrt{xy}+1\right)-\left(\sqrt{x}+1\right)\left(\sqrt{xy}-1\right)}{\left(\sqrt{xy}-1\right)\left(\sqrt{xy}+1\right)}\right)\)
\(A=\left(\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{xy}-1\right)-\sqrt{x}\left(\sqrt{y}+1\right)\left(\sqrt{xy}+1\right)}{\left(\sqrt{xy}+1\right)\left(\sqrt{xy}-1\right)}+\dfrac{\left(\sqrt{xy}+1\right)\left(\sqrt{xy}-1\right)}{\left(\sqrt{xy}+1\right)\left(\sqrt{xy}-1\right)}\right)\)
\(:\left(\dfrac{\text{}\left(\sqrt{xy}-1\right)\left(\sqrt{xy}+1\right)}{\left(\sqrt{xy}-1\right)\left(\sqrt{xy}+1\right)}-\dfrac{\sqrt{x}\left(\sqrt{y}+1\right)\left(\sqrt{xy}+1\right)-\left(\sqrt{x}+1\right)\left(\sqrt{xy}-1\right)}{\left(\sqrt{xy}-1\right)\left(\sqrt{xy}+1\right)}\right)\)
\(A=\left(\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{xy}-1\right)-\sqrt{x}\left(\sqrt{y}+1\right)\left(\sqrt{xy}+1\right)+\left(\sqrt{xy}+1\right)\left(\sqrt{xy}-1\right)}{\left(\sqrt{xy}+1\right)\left(\sqrt{xy}-1\right)}\right)\)
\(.\left(\dfrac{\left(\sqrt{xy}-1\right)\left(\sqrt{xy}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{xy}-1\right)-\sqrt{x}\left(\sqrt{y}+1\right)\left(\sqrt{xy}+1\right)-\left(\sqrt{x}+1\right)\left(\sqrt{xy}-1\right)}\right)\)
\(A=1\)