có thể giúp mình giải bài này với đc k ạ mình đang cần gấp (xin cảm ơn)
Bài 1:
a,\(3x-7\sqrt{x}+4=0\)
b, \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)
c, \(\dfrac{\sqrt{x}-2}{\sqrt{x}-4}=\dfrac{6-\sqrt{x}}{7-\sqrt{x}}\)
d, \(\sqrt{x-3}-\dfrac{5}{3}\sqrt{9x-27}+\dfrac{3}{2}\sqrt{4x-12}=-1\)
Bài 2:
a, \(\sqrt{x^2+6x+9}=3x-6\)
b, \(\sqrt{3x^2}=x+2\)
c, \(\sqrt{x^2-4x+4}-2x+5=0\)
d, \(x^2-2\sqrt{7x}+7=0\)
Bài 3:
a, \(\sqrt{3+x}+\sqrt{6-x}=3\)
b, \(\sqrt{3+x}-\sqrt{2-x}=1\)
Bài 2
b, `\sqrt{3x^2}=x+2` ĐKXĐ : `x>=0`
`=>(\sqrt{3x^2})^2=(x+2)^2`
`=>3x^2=x^2+4x+4`
`=>3x^2-x^2-4x-4=0`
`=>2x^2-4x-4=0`
`=>x^2-2x-2=0`
`=>(x^2-2x+1)-3=0`
`=>(x-1)^2=3`
`=>(x-1)^2=(\pm \sqrt{3})^2`
`=>` $\left[\begin{matrix} x-1=\sqrt{3}\\ x-1=-\sqrt{3}\end{matrix}\right.$
`=>` $\left[\begin{matrix} x=1+\sqrt{3}\\ x=1-\sqrt{3}\end{matrix}\right.$
Vậy `S={1+\sqrt{3};1-\sqrt{3}}`
Bài 1
a, `3x-7\sqrt{x}+4=0` ĐKXĐ : `x>=0`
`<=>3x-3\sqrt{x}-4\sqrt{x}+4=0`
`<=>3\sqrt{x}(\sqrt{x}-1)-4(\sqrt{x}-1)=0`
`<=>(3\sqrt{x}-4)(\sqrt{x}-1)=0`
TH1 :
`3\sqrt{x}-4=0`
`<=>\sqrt{x}=4/3`
`<=>x=16/9` ( tm )
TH2
`\sqrt{x}-1=0`
`<=>\sqrt{x}=1` (tm)
Vậy `S={16/9;1}`
b, `1/2\sqrt{x-1}-9/2\sqrt{x-1}+3\sqrt{x-1}=-17` ĐKXĐ : `x>=1`
`<=>(1/2-9/2+3)\sqrt{x-1}=-17`
`<=>-\sqrt{x-1}=-17`
`<=>\sqrt{x-1}=17`
`<=>x-1=289`
`<=>x=290` ( tm )
Vậy `S={290}`
Bài 1:
a) Ta có: \(3x-7\sqrt{x}+4=0\)
\(\Leftrightarrow3x-3\sqrt{x}-4\sqrt{x}+4=0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(3\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{9}\end{matrix}\right.\)
b) Ta có: \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)
\(\Leftrightarrow\sqrt{x-1}\cdot\left(-1\right)=-17\)
\(\Leftrightarrow\sqrt{x-1}=17\)
\(\Leftrightarrow x-1=289\)
hay x=290
Bài 2:
d) Ta có: \(x^2-2\sqrt{7x}+7=0\)
\(\Leftrightarrow\left(x-\sqrt{7}\right)^2=0\)
\(\Leftrightarrow x-\sqrt{7}=0\)
hay \(x=\sqrt{7}\)